VHOPE 200 (Voriconazole Tablets I.P. 200 mg)

COMPOSITION

Each film coated tablet contains:

Voriconazole I.P. 200 mg

Excipients q.s.

Color: Titanium Dioxide I.P.

THERAPEUTIC INDICATIONS

Voriconazole is indicated for the treatment of the following conditions:

- Treatment of invasive aspergillosis
- Treatment of fluconazole resistant serious invasive Candida infections (including C. krusei),
- Esophageal candiasis.
- Serious fungal infection caused by Scedosporium spp. and Fusarium spp. Including Fusarium solani. in patients intolerant of or refractory to other therapy

Specimens for fungal culture and other relevant laboratory studies (including histopathology) should be obtained prior to therapy to isolate and identify causative organism (s). Therapy may be instituted before the results of the cultures and other laboratory studies are known. However, once these results become available, antifungal therapy should be adjusted accordingly.

POSOLOGY AND METHOD OF ADMINISTRATION

Posology

Electrolyte disturbances such as hypokalaemia, hypomagnesaemia and hypocalcaemia should be monitored and corrected, if necessary, prior to initiation and during voriconazole therapy.

Duration of treatment

Treatment duration should be as short as possible depending on the patient's clinical and mycological response. Long term exposure to voriconazole greater than 180 days (6 months) requires careful assessment of the benefit-risk balance.

Dosage adjustment (Adults)

If patient is unable to tolerate treatment at a higher dose, reduce the oral dose by 50 mg steps to the 200 mg twice daily (or 100 mg twice daily for patients less than 40 kg) maintenance dose.

In case of use as prophylaxis, refer below.

Children (2 to <12 years) and young adolescents with low body weight (12 to 14 years and <50 kg)

Voriconazole should be dosed as children as these young adolescents may metabolize voriconazole more similarly to children than to adults.

Prophylaxis in Adults and Children

Prophylaxis should be initiated on the day of transplant and may be administered for up to 100 days. Prophylaxis should be as short as possible depending on the risk for developing invasive fungal infection (IFI) as defined by neutropenia or immunosuppression. It may only be continued up to 180 days after transplantation in case of continuing immunosuppression or graft versus host disease (GvHD)

Dosage

The recommended dosing regimen for prophylaxis is the same as for treatment in the respective age groups. Please refer to the treatment tables above.

Duration of prophylaxis

The safety and efficacy of voriconazole use for longer than 180 days has not been adequately studied in clinical trials.

Use of voriconazole in prophylaxis for greater than 180 days (6 months) requires careful assessment of the benefit-risk balance.

The following instructions apply to both Treatment and Prophylaxis

Dosage adjustment

For prophylaxis use, dose adjustments are not recommended in the case of lack of efficacy or treatment-related adverse events. In the case of treatment-related adverse events, discontinuation of voriconazole and use of alternative antifungal agents must be considered.

Dosage adjustments in case of co-administration

Phenytoin may be coadministered with voriconazole if the maintenance dose of voriconazole is increased from 200 mg to 400 mg orally, twice daily (100 mg to 200 mg orally, twice daily in patients less than 40 kg).

The combination of voriconazole with rifabutin should, if possible be avoided. However, if the combination is strictly needed, the maintenance dose of voriconazole may be increased from 200 mg to 350 mg orally, twice daily (100 mg to 200 mg orally, twice daily in patients less than 40 kg).

Efavirenz may be coadministered with voriconazole if the maintenance dose of voriconazole is increased to 400 mg every 12 hours and the efavirenz dose is reduced by 50%, i.e. to 300 mg once daily. When treatment with voriconazole is stopped, the initial dosage of efavirenz should be restored.

Rifabutin or phenytoin may be coadministered with voriconazole if the maintenance dose of voriconazole is increased to 5 mg/kg intravenously twice daily.

Elderly

No dose adjustment is necessary for elderly patients.

Renal impairment

Film-coated tablets:

The pharmacokinetics of orally administered voriconazole are not affected by renal impairment. Therefore, no adjustment is necessary for oral dosing for patients with mild to severe renal impairment.

Voriconazole is haemodialysed with a clearance of 121 ml/min. A 4- hour haemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment.

Hepatic impairment

Voriconazole has been associated with elevations in liver function tests and clinical signs of liver damage, such as jaundice, and must only be used in patients with severe hepatic

impairment if the benefit outweighs the potential risk. Patients with severe hepatic impairment must be carefully monitored for drug toxicity.

Paediatric population

The safety and efficacy of voriconazole in children below 2 years has not been established.

Method of administration

Vhope 200 tablets are to be taken at least one hour before, or one hour following, a meal.

CONTRAINDICATIONS

Hypersensitivity to the active substance or to any of the excipients.

Coadministration with CYP3A4 substrates, terfenadine, astemizole, cisapride, pimozide or quinidine since increased plasma concentrations of these medicinal products can lead to QTc prolongation and rare occurrences of torsades de pointes.

Coadministration with rifampicin, carbamazepine and phenobarbital since these medicinal products are likely to decrease plasma voriconazole concentrations significantly.

Coadministration of standard doses of voriconazole with efavirenz doses of 400 mg once daily or higher is contraindicated, because efavirenz significantly decreases plasma voriconazole concentrations in healthy subjects at these doses. Voriconazole also significantly increases efavirenz plasma concentrations.

Coadministration with high-dose ritonavir (400 mg and above twice daily) because ritonavir significantly decreases plasma voriconazole concentrations in healthy subjects at this dose.

Coadministration with ergot alkaloids (ergotamine, dihydroergotamine), which are CYP3A4 substrates, since increased plasma concentrations of these medicinal products can lead to ergotism.

Coadministration with sirolimus since voriconazole is likely to increase plasma concentrations of sirolimus significantly. Coadministration with St. John's Wort.

SPECIAL WARNINGS AND PRECAUTIONS FOR USE

Hypersensitivity

Caution should be used in prescribing voriconazole to patients with hypersensitivity to other azoles

<u>Duration of IV treatment</u>

The duration of treatment with the intravenous formulation should be no longer than 6 months

Cardiovascular

Voriconazole has been associated with QTc interval prolongation. There have been rare cases of torsades de pointes in patients taking voriconazole who had risk factors, such as history of cardiotoxic chemotherapy, cardiomyopathy, hypokalaemia and concomitant medicinal products that may have been contributory. Voriconazole should be administered with caution to patients with potentially proarrhythmic conditions, such as:

- Congenital or acquired QTc-prolongation.
- Cardiomyopathy, in particular when heart failure is present.
- Sinus bradycardia.

- Existing symptomatic arrhythmias.
- Concomitant medicinal product that is known to prolong QTc interval.

Electrolyte disturbances such as hypokalaemia, hypomagnesaemia and hypocalcaemia should be monitored and corrected, if necessary, prior to initiation and during voriconazole therapy. A study has been conducted in healthy volunteers which examined the effect on QTc interval of single doses of voriconazole up to 4 times the usual daily dose. No subject experienced an interval exceeding the potentially clinically-relevant threshold of 500 msec.

Hepatic toxicity

In clinical trials, there have been cases of serious hepatic reactions during treatment with voriconazole (including clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities). Instances of hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly haematological malignancy). Transient hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. Liver dysfunction has usually been reversible on discontinuation of therapy.

Monitoring of hepatic function

Patients receiving voriconazole must be carefully monitored for hepatic toxicity. Clinical management should include laboratory evaluation of hepatic function (specifically AST and ALT) at the initiation of treatment with voriconazole and at least weekly for the first month of treatment. Treatment duration should be as short as possible; however, if based on the benefit-risk assessment the treatment is continued monitoring frequency can be reduced to monthly if there are no changes in the Liver Function Tests.

If the liver function tests become markedly elevated, voriconazole should be discontinued, unless the medical judgment of the risk-benefit of the treatment for the patient justifies continued use.

Monitoring of hepatic function should be carried out in both children and adults.

Visual adverse reactions

There have been reports of prolonged visual adverse reactions, including blurred vision, optic neuritis and papilloedema.

Renal adverse reactions

Acute renal failure has been observed in severely ill patients undergoing treatment with voriconazole. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medicinal products and have concurrent conditions that may result in decreased renal function.

Monitoring of renal function

Patients should be monitored for the development of abnormal renal function. This should include laboratory evaluation, particularly serum creatinine.

Monitoring of pancreatic function

Patients, especially children, with risk factors for acute pancreatitis (e.g., recent chemotherapy, haematopoietic stem cell transplantation [HSCT]), should be monitored closely during voriconazole treatment. Monitoring of serum amylase or lipase may be considered in this clinical situation.

Dermatological adverse reactions

Patients have developed exfoliative cutaneous reactions, such as Stevens-Johnson syndrome, during treatment with voriconazole. If a patient develops a rash, he should be monitored closely and voriconazole discontinued if lesions progress.

In addition, voriconazole has been associated with phototoxicity, including reactions such as ephelides, lentigo, actinic keratosis and pseudoporphyria. It is recommended that all patients, including children, avoid exposure to direct sunlight during voriconazole treatment and use measures such as protective clothing and sunscreen with high sun protection factor (SPF).

Long-term treatment

Long term exposure (treatment or prophylaxis) greater than 180 days (6 months) requires careful assessment of the benefit-risk balance and physicians should therefore consider the need to limit the exposure to voriconazole. The following severe adverse events have been reported in relation with long-term voriconazole treatment:

<u>Squamous cell carcinoma of the skin (SCC)</u> has been reported in patients, some of whom have reported prior phototoxic reactions. If phototoxic reactions occur, multidisciplinary advice should be sought and the patient should be referred to a dermatologist. Voriconazole discontinuation and use of alternative antifungal agents should be considered. Dermatologic evaluation should be performed on a systematic and regular basis, whenever voriconazole is continued despite the occurrence of phototoxicity-related lesions, to allow early detection and management of premalignant lesions. Voriconazole should be discontinued if premalignant skin lesions or squamous cell carcinoma are identified.

Non-infectious periostitis with elevated fluoride and alkaline phosphatase levels has been reported in transplant patients. If a patient develops skeletal pain and radiologic findings compatible with periostitis voriconazole discontinuation should be considered after multidisciplinary advice.

Paediatric population

Safety and effectiveness in paediatric subjects below the age of two years has not been established. Voriconazole is indicated for paediatric patients aged two years or older. A higher frequency of liver enzyme elevations was observed in the paediatric population. Hepatic function should be monitored in both children and adults. Oral bioavailability may be limited in paediatric patients aged 2 to <12 years with malabsorption and very low body weight for age. In that case, intravenous voriconazole administration is recommended.

The frequency of phototoxicity reactions is higher in the paediatric population. As an evolution towards SCC has been reported, stringent measures for the photoprotection are warranted in this population of patients. In children experiencing photoaging injuries such as lentigines or ephelides, sun avoidance and dermatologic follow-up are recommended even after treatment discontinuation.

Prophylaxis

In case of treatment-related adverse events (hepatotoxicity, severe skin reactions including phototoxicity and SCC, severe or prolonged visual disorders and periostitis), discontinuation of voriconazole and use of alternative antifungal agents must be considered.

Phenytoin (CYP2C9 substrate and potent CYP450 inducer)

Careful monitoring of phenytoin levels is recommended when phenytoin is coadministered with voriconazole. Concomitant use of voriconazole and phenytoin should be avoided unless the benefit outweighs the risk.

Efavirenz (CYP450 inducer; CYP3A4 inhibitor and substrate)

When voriconazole is coadministered with efavirenz the dose of voriconazole should be increased to 400 mg every 12 hours and the dose of efavirenz should be decreased to 300 mg every 24 hours.

Rifabutin (Potent CYP450 inducer)

Careful monitoring of full blood counts and adverse reactions to rifabutin (e.g., uveitis) is recommended when rifabutin is coadministered with voriconazole. Concomitant use of voriconazole and rifabutin should be avoided unless the benefit outweighs the risk.

Ritonavir (potent CYP450 inducer; CYP3A4 inhibitor and substrate)

Coadministration of voriconazole and low-dose ritonavir (100 mg twice daily) should be avoided unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.

Everolimus (CYP3A4 substrate, P-gp substrate)

Coadministration of voriconazole with everolimus is not recommended because voriconazole is expected to significantly increase everolimus concentrations. Currently there are insufficient data to allow dosing recommendations in this situation.

Methadone (CYP3A4 substrate)

Frequent monitoring for adverse reactions and toxicity related to methadone, including QTc prolongation, is recommended when coadministered with voriconazole since methadone levels increased following coadministration of voriconazole. Dose reduction of methadone may be needed.

Short-acting opiates (CYP3A4 substrate)

Reduction in the dose of alfentanil, fentanyl and other short-acting opiates similar in structure to alfentanil and metabolised by CYP3A4 (e.g., sufentanil) should be considered when coadministered with voriconazole. As the half-life of alfentanil is prolonged in a 4-fold manner when alfentanil is coadministered with voriconazole, and in an independent published study concomitant use of voriconazole with fentanyl resulted in an increase in the mean $AUC_{0-\infty}$ of fentanyl, frequent monitoring for opiate-associated adverse reactions (including a longer respiratory monitoring period) may be necessary.

Long-acting opiates (CYP3A4 substrate)

Reduction in the dose of oxycodone and other long-acting opiates metabolized by CYP3A4 (e.g., hydrocodone) should be considered when coadministered with voriconazole. Frequent monitoring for opiate-associated adverse reactions may be necessary.

Fluconazole (CYP2C9, CYP2C19 and CYP3A4 inhibitor)

Coadministration of oral voriconazole and oral fluconazole resulted in a significant increase in C_{max} and $AUC\tau$ of voriconazole in healthy subjects. The reduced dose and/or frequency of voriconazole and fluconazole that would eliminate this effect have not been established. Monitoring for voriconazole - associated adverse reactions is recommended if voriconazole is used sequentially after fluconazole.

DRUG-INTERACTION

Voriconazole is metabolised by, and inhibits the activity of, cytochrome P450 isoenzymes, CYP2C19, CYP2C9, and CYP3A4. Inhibitors or inducers of these isoenzymes may increase or decrease voriconazole plasma concentrations, respectively, and there is potential for voriconazole to increase the plasma concentrations of substances metabolised by these CYP450 isoenzymes.

Unless otherwise specified, drug interaction studies have been performed in healthy adult male subjects using multiple dosing to steady state with oral voriconazole at 200 mg twice daily (BID). These results are relevant to other populations and routes of administration.

Voriconazole should be administered with caution in patients with concomitant medication that is known to prolong QTc interval. When there is also a potential for voriconazole to increase the plasma concentrations of substances metabolised by CYP3A4 isoenzymes (certain antihistamines, quinidine, cisapride, pimozide), coadministration is contraindicated.

Interaction table

Interactions between voriconazole and other medicinal products are listed in the table below (once daily as "QD", twice daily as "BID", three times daily as "TID" and not determined as "ND"). The direction of the arrow for each pharmacokinetic parameter is based on the 90% confidence interval of the geometric mean ratio being within (\leftrightarrow), below (\downarrow) or above (\uparrow) the 80-125% range. The asterisk (*) indicates a two-way interaction. AUC τ , AUC $_t$ and AUC $_t$ are represent area under the curve over a dosing interval, from time zero to the time with detectable measurement and from time zero to infinity, respectively.

The interactions in the table are presented in the following order: contraindications, those requiring dose adjustment and careful clinical and/or biological monitoring, and finally those that have no significant pharmacokinetic interaction but may be of clinical interest in this therapeutic field.

1	Interaction Geometric mean changes (%)	Recommendations concerning coadministration
pimozide, quinidine and terfenadine	Although not studied, increased plasma concentrations of these medicinal products can lead to QTc prolongation and rare occurrences of torsades de pointes.	contraindication section)
acting barbiturates (e.g., phenobarbital, mephobarbital)	Although not studied, carbamazepine and long-acting barbiturates are likely to significantly decrease plasma voriconazole concentrations.	contraindication section)
Efavirenz (a non-nucleoside reverse transcriptase inhibitor) [CYP450 inducer;		Use of standard doses of voriconazole with efavirenz doses of 400 mg QD or higher is contraindicated

substrate] Efavirenz 400 mg QD, coadministered with voriconazole 200 mg BID* Efavirenz 300 mg QD,	Voriconazole $C_{max} \downarrow 61\%$ Voriconazole AUC $\tau \downarrow 77\%$ Compared to efavirenz 600 mg QD, Efavirenz $C_{max} \leftrightarrow$ Efavirenz AUC $\tau \uparrow 17\%$ Compared to voriconazole 200 mg BID, Voriconazole $C_{max} \uparrow 23\%$ Voriconazole AUC $\tau \downarrow 7\%$	maintenance dose is increased to 400 mg BID and the efavirenz dose is
	Although not studied, voriconazole is likely to increase the plasma concentrations of ergot alkaloids and lead to ergotism.	Contraindicated
with voriconazole 350 mg BID)* 300 mg QD (coadministered	Voriconazole $C_{max} \downarrow 69\%$ Voriconazole AUC $\tau \downarrow 78\%$ Compared to voriconazole 200 mg BID, Voriconazole $C_{max} \downarrow 4\%$ Voriconazole AUC $\tau \downarrow 32\%$ Rifabutin $C_{max} \uparrow 195\%$ Rifabutin AUC $\tau \uparrow 331\%$ Compared to voriconazole 200 mg BID, Voriconazole $C_{max} \uparrow 104\%$ Voriconazole AUC $\tau \uparrow 87\%$	voriconazole may be increased to 5 mg/kg intravenously BID or from 200 mg to 350 mg orally BID (100 mg to 200 mg
Rifampicin (600 mg QD) [potent CYP450 inducer]	Voriconazole C _{max} ↓ 93% Voriconazole AUC τ ↓ 96%	Contraindicated
Ritonavir (protease inhibitor) [potent CYP450 inducer; CYP3A4 inhibitor and substrate] High dose (400 mg BID) Low dose (100 mg BID)*	Ritonavir C_{max} and $AUC\tau \leftrightarrow$ Voriconazole $C_{max} \downarrow 66\%$ Voriconazole $AUC\tau \downarrow 82\%$ Ritonavir $C_{max} \downarrow 25\%$ Ritonavir $AUC\tau \downarrow 13\%$ Voriconazole $\downarrow C_{max} 24\%$ Voriconazole $AUC\tau \downarrow 39\%$	Coadministration of voriconazole and high doses of ritonavir (400 mg and above BID) is contraindicated . Coadministration of voriconazole and low-dose ritonavir (100 mg BID) should be avoided unless an assessment of the benefit/risk to the patient

		justifies the use of voriconazole.
St. John's Wort [CYP450 inducer; P-gp inducer] 300 mg TID (coadministered with voriconazole 400 mg single dose)		Contraindicated
Everolimus [CYP3A4 substrate, P-gp substrate]	voriconazole is likely to significantly increase the plasma	Coadministration of voriconazole with everolimus is not recommended because voriconazole is expected to significantly increase everolimus concentrations.
Fluconazole (200 mg QD) [CYP2C9, CYP2C19 and CYP3A4 inhibitor]	Voriconazole C _{max} ↑ 57% Voriconazole AUCt ↑ 79% Fluconazole C _{max} ND Fluconazole AUCt ND	The reduced dose and/or frequency of voriconazole and fluconazole that would eliminate this effect have not been established. Monitoring for voriconazole-associated adverse reactions is recommended if voriconazole is used sequentially after fluconazole.
Phenytoin [CYP2C9 substrate and potent CYP450 inducer] 300 mg QD	Voriconazole C _{max} ↓ 49% Voriconazole AUC t ↓ 69%	Concomitant use of voriconazole and phenytoin should be avoided unless the benefit outweighs the risk.
300 mg QD (coadministered	Phenytoin C _{max} ↑ 67%	Careful monitoring of phenytoin plasma levels is recommended.
	Voriconazole C _{max} ↑ 34% Voriconazole AUCt ↑ 39%	Phenytoin may be coadministered with voriconazole if the maintenance dose of voriconazole is increased to 5 mg/kg IV BID or from 200 mg to 400 mg oral BID (100 mg to 200 mg oral BID in patients less than 40 kg)
Anticoagulants		Close monitoring of prothrombin time or other

	prothrombin time was approximately 2-fold. Although not studied, voriconazole may increase the	Dose reduction of benzodiazepines should be considered.
Immunosuppressants [CYP3A4 substrates] Sirolimus (2 mg single dose) Ciclosporin (in stable renal transplant recipients receiving chronic ciclosporin therapy) Tacrolimus (0.1 mg/kg single dose)	In an independent published study, Sirolimus $C_{max} \uparrow 6.6$ -fold Sirolimus $AUC_{0-\infty} \uparrow 11$ -fold Ciclosporin $C_{max} \uparrow 13\%$ Ciclosporin $AUC\tau \uparrow 70\%$	

Long-Acting Opiates [CYP3A4 substrates] Oxycodone (10 mg single dose)	In an independent published study, $Oxycodone\ C_{max}\uparrow 1.7\text{-fold} \\ Oxycodone\ AUC_{0-\infty}\uparrow 3.6\text{-fold}$	discontinued, tacrolimus levels must be carefully monitored and the dose increased as necessary. Dose reduction in oxycodone and other long- acting opiates metabolized by CYP3A4 (e.g., hydrocodone) should be considered. Frequent monitoring for opiate- associated adverse reactions may be necessary.
Methadone (32-100 mg QD) [CYP3A4 substrate]	R-methadone (active) $C_{max} \uparrow 31\%$ R-methadone (active) AUC $\tau \uparrow 47\%$ S-methadone $C_{max} \uparrow 65\%$ S-methadone AUC $\tau \uparrow 103\%$	Frequent monitoring for adverse reactions and toxicity related to methadone, including QTc prolongation, is recommended. Dose reduction of methadone may be needed.
Non-Steroidal Anti- Inflammatory Drugs (NSAIDs) [CYP2C9 substrates] Ibuprofen (400 mg single dose) Diclofenac (50 mg single dose)	S-Ibuprofen AUC _{0-∞} ↑ 100%	Frequent monitoring for adverse reactions and toxicity related to NSAIDs is recommended. Dose reduction of NSAIDs may be needed.
CYP2C19 and CYP3A4 substrate]	Omeprazole C _{max} ↑ 116% Omeprazole AUCt ↑ 280% Voriconazole C _{max} ↑ 15% Voriconazole AUCt ↑ 41% Other proton pump inhibitors that are CYP2C19 substrates may also be inhibited by voriconazole and may result in increased plasma concentrations	No dose adjustment of voriconazole is recommended. When initiating voriconazole in patients already receiving omeprazole doses of 40 mg or above, it is recommended
Oral Contraceptives* [CYP3A4 substrate; CYP2C19 inhibitor] Norethisterone/ethinylestradiol (1 mg/0.035 mg QD)	Norethisterone C _{max} ↑ 15%	Monitoring for adverse reactions related to oral contraceptives, in addition to those for voriconazole, is recommended.
Short-acting Opiates [CYP3A4 substrates]		Dose reduction of alfentanil, fentanyl and other short-acting opiates similar in structure to alfentanil and

dose, with concomitant naloxone)	In an independent published study, Alfentanil $AUC_{0-\infty} \uparrow 6$ -fold In an independent published study, Fentanyl $AUC_{0-\infty} \uparrow 1.34$ -fold	(e.g., sufentanil) should be considered. Extended and frequent monitoring for
Statins (e.g., lovastatin) [CYP3A4 substrates]	Although not studied clinically, voriconazole is likely to increase the plasma concentrations of statins that are metabolised by CYP3A4 and could lead to rhabdomyolysis.	
•	voriconazole is likely to increase the plasma concentrations of	
Vinca Alkaloids (e.g., vincristine and vinblastine) [CYP3A4 substrates]	Although not studied, voriconazole is likely to increase the plasma concentrations of vinca alkaloids and lead to neurotoxicity.	
Other HIV Protease Inhibitors (e.g., saquinavir, amprenavir and nelfinavir)* [CYP3A4 substrates and inhibitors]	3	dose adjustment may be needed.
(NNRTIs) (e.g., delavirdine, nevirapine)*	Not studied clinically. <i>In vitro</i> studies show that the metabolism of voriconazole may be inhibited by NNRTIs and voriconazole may inhibit the metabolism of NNRTIs. The findings of the effect of efavirenz on voriconazole suggest that the metabolism of voriconazole may be induced by an NNRTI.	and/or lack of efficacy, and dose adjustment may be
Cimetidine (400 mg BID) [non-specific CYP450 inhibitor and increases gastric pH]	Voriconazole C _{max} ↑ 18% Voriconazole AUCt ↑ 23%	No dose adjustment
Digoxin (0.25 mg QD)	Digoxin $C_{max} \leftrightarrow$	No dose adjustment

[P-gp substrate]	Digoxin AUCτ ↔	
Indinavir (800 mg TID) [CYP3A4 inhibitor and substrate]	$\begin{array}{l} \text{Indinavir } C_{max} \leftrightarrow \\ \text{Indinavir } AUC\tau \leftrightarrow \\ \text{Voriconazole } C_{max} \leftrightarrow \\ \text{Voriconazole } AUC\tau \leftrightarrow \end{array}$	No dose adjustment
Macrolide antibiotics Erythromycin (1 g BID) [CYP3A4 inhibitor] Azithromycin (500 mg QD)	Voriconazole C_{max} and AUC $\tau \leftrightarrow$ Voriconazole C_{max} and AUC $\tau \leftrightarrow$ The effect of voriconazole on either erythromycin or azithromycin is unknown.	No dose adjustment
Mycophenolic acid (1 g single dose) [UDP-glucuronyl transferase substrate]	Mycophenolic acid $AUC_t \leftrightarrow$	No dose adjustment
Prednisolone (60 mg single dose) [CYP3A4 substrate]	Prednisolone C _{max} ↑ 11% Prednisolone AUC _{0-∞} ↑ 34%	No dose adjustment
Ranitidine (150 mg BID) [increases gastric pH]	$ \begin{array}{cccc} Voriconazole & C_{max} and & AUC \\ \tau & \leftrightarrow & \end{array} $	No dose adjustment

FERTILITY, PREGNANCY AND LACTATION

Pregnancy

There are no adequate data on the use of voriconazole in pregnant women available.

Studies in animals have shown reproductive toxicity. The potential risk for humans is unknown. voriconazole must not be used during pregnancy unless the benefit to the mother clearly outweighs the potential risk to the foetus.

Women of child-bearing potential

Women of child-bearing potential must always use effective contraception during treatment.

Breast-feeding

The excretion of voriconazole into breast milk has not been investigated. Breast-feeding must be stopped on initiation of treatment with voriconazole.

Fertility

In an animal study, no impairment of fertility was demonstrated in male and female rats.

EFFECTS ON ABILITY TO DRIVE AND USE MACHINES

Voriconazole has moderate influence on the ability to drive and use machines. It may cause transient and reversible changes to vision, including blurring, altered/enhanced visual perception and/or photophobia. Patients must avoid potentially hazardous tasks, such as driving or operating machinery while experiencing these symptoms.

UNDESIRABLE EFFECTS

Summary of safety profile

The safety profile of voriconazole in adults is based on an integrated safety database of more than 2,000 subjects (including 1,603 adult patients in therapeutic trials) and an additional 270 adults in prophylaxis trials. This represents a heterogeneous population, containing patients with haematological malignancy, HIV- infected patients with oesophageal candidiasis and refractory fungal infections, non-neutropenic patients with candidaemia or aspergillosis and healthy volunteers.

The most commonly reported adverse reactions were visual impairment, pyrexia, rash, vomiting, nausea, diarrhoea, headache, peripheral oedema, liver function test abnormal, respiratory distress and abdominal pain.

The severity of the adverse reactions was generally mild to moderate. No clinically significant differences were seen when the safety data were analysed by age, race, or gender.

Tabulated list of adverse reactions

In the table below, since the majority of the studies were of an open nature, all causality adverse reactions and their frequency categories in 1,873 adults from pooled therapeutic (1,603) and prophylaxis (270) studies, by system organ class and frequency, are listed.

Frequency categories are expressed as: Very common ($\geq 1/10$); Common ($\geq 1/100$ to <1/10); Uncommon ($\geq 1/1,000$ to <1/100); Rare ($\geq 1/10,000$ to <1/1,000); Very rare (<1/10,000); Not known (cannot be estimated from the available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

Undesirable effects reported in subjects receiving voriconazole:

System Organ Class	Very common ≥ 1/10	Common ≥ 1/100 to < 1/10	Uncommon ≥ 1/1,000 to < 1/100	Rare ≥ 1/10,000 to < 1/1,000	Frequency not known (cannot be estimated from available data)
Infections and infestations		sinusitis	pseudomembran ous colitis		
Neoplasms benign, malignant and unspecified (including cysts and polyps)					squamous cell carcinoma*
Blood and lymphatic system disorders		thrombocytopeni	failure,	disseminated intravascular coagulation	

Immune system disorders			hypersensitivity	anaphylactoid reaction	
Endocrine disorders			adrenal insufficiency, hypothyroidism	hyperthyroidis m	
		hypoglycaemia, hypokalaemia, hyponatraemia			
Psychiatric disorders		depression, hallucination, anxiety, insomnia, agitation, confusional state			
Nervous system disorders	headache	convulsion, syncope, tremor, hypertonia ³ , paraesthesia, somnolence, dizziness	brain oedema, encephalopathy ⁴ , extrapyramidal disorder ⁵ , neuropathy peripheral, ataxia, hypoaesthesia, dysgeusia		
Eye disorders		retinal haemorrhage	optic nerve disorder ⁷ , papilloedema ⁸ , oculogyric crisis, diplopia, scleritis, blepharitis	optic atrophy, corneal opacity	
Ear and labyrinth disorders			hypoacusis, vertigo, tinnitus		
Cardiac disorders		arrhythmia supraventricular, tachycardia, bradycardia	ventricular fibrillation, ventricular extrasystoles, ventricular tachycardia, electrocardiogra m QT prolonged, supraventricular tachycardia	torsades de pointes, atrioventricula r block complete, bundle branch block, nodal rhythm	
Vascular disorders		hypotension, phlebitis	thrombophlebitis, lymphangitis		
	respiratory distress ⁹	acute respiratory distress			

mediastinal disorders		syndrome, pulmonary oedema			
Gastrointestin al disorders	diarrhoea, vomiting, abdominal pain, nausea	cheilitis, dyspepsia, constipation, gingivitis	peritonitis, pancreatitis, swollen tongue, duodenitis, gastroenteritis, glossitis		
Hepatobiliary disorders	liver function test abnormal	jaundice, jaundice cholestatic, hepatitis ¹⁰	hepatic failure, hepatomegaly, cholecystitis, cholelithiasis		
Skin and subcutaneous tissue disorders	rash	dermatitis exfoliative, alopecia, rash maculo-papular, pruritus, erythema	syndrome, phototoxicity, purpura, urticaria, dermatitis allergic, rash papular, rash	toxic epidermal necrolysis, angioedema, actinic keratosis*, pseudoporphy ria erythema multiforme, psoriasis, drug eruption	
Musculoskele tal and connective tissue disorders		back pain	arthritis		periostitis*
Renal and urinary disorders		renal failure acute, haematuria	renal tubular necrosis, proteinuria, nephritis		
General disorders and administration site conditions		chest pain, face oedema ¹¹ , asthenia, chills	infusion site reaction, influenza like illness		
Investigations		blood creatinine increased	blood urea increased, blood cholesterol increased		
 Includes imm Includes nuch Includes hypo Includes akatl 	le neutroper une thromb al rigidity a exic-ischaen hisia and pa	nia and neutropeni ocytopenic purpur and tetany. nic encephalopath rkinsonism.			

- ⁷ Prolonged optic neuritis has been reported post-marketing.
- ⁸ See special warnings and precautions section.
- ⁹ Includes dyspnoea and dyspnoea exertional.
- ¹⁰ Includes drug-induced liver injury, hepatitis toxic, hepatocellular injury and hepatotoxicity.
- ¹¹ Includes periorbital oedema, lip oedema, and oedema mouth.

Description of selected adverse reactions

Visual impairments

In clinical trials, visual impairments (including blurred vision, photophobia, chloropsia, chromatopsia, colour blindness, cyanopsia, eye disorder, halo vision, night blindness, oscillopsia, photopsia, scintillating scotoma, visual acuity reduced, visual brightness, visual field defect, vitreous floaters, and xanthopsia) with voriconazole were very common. These visual impairments were transient and fully reversible, with the majority spontaneously resolving within 60 minutes and no clinically significant long-term visual effects were observed. There was evidence of attenuation with repeated doses of voriconazole. The visual impairments were generally mild, rarely resulted in discontinuation and were not associated with long-term sequelae. Visual impairments may be associated with higher plasma concentrations and/or doses.

The mechanism of action is unknown, although the site of action is most likely to be within the retina. In a study in healthy volunteers investigating the impact of voriconazole on retinal function, voriconazole caused a decrease in the electroretinogram (ERG) waveform amplitude. The ERG measures electrical currents in the retina. The ERG changes did not progress over 29 days of treatment and were fully reversible on withdrawal of voriconazole.

There have been post-marketing reports of prolonged visual adverse events.

Dermatological reactions

Dermatological reactions were very common in patients treated with voriconazole in clinical trials, but these patients had serious underlying diseases and were receiving multiple concomitant medicinal products. The majority of rashes were of mild to moderate severity. Patients have developed serious cutaneous reactions, including Stevens-Johnson syndrome (uncommon), toxic epidermal necrolysis (rare) and erythema multiforme (rare) during treatment with voriconazole.

If a patient develops a rash they should be monitored closely and voriconazole discontinued if lesions progress. Photosensitivity reactions such as ephelides, lentigo and actinic keratosis have been reported, especially during long-term therapy.

There have been reports of squamous cell carcinoma of the skin in patients treated with voriconazole for long periods of time; the mechanism has not been established.

Liver function tests

The overall incidence of transaminase increases >3 x ULN (not necessarily comprising an adverse event) in the voriconazole clinical programme was 18 % (319/1,768) in adults and 25.8% (73/283) in paediatric subjects who received voriconazole for pooled therapeutic and prophylaxis use. Liver function test abnormalities may be associated with higher plasma concentrations and/or doses. The majority of abnormal liver function tests either resolved

during treatment without dose adjustment or following dose adjustment, including discontinuation of therapy.

Voriconazole has been associated with cases of serious hepatic toxicity in patients with other serious underlying conditions. This includes cases of jaundice, hepatitis and hepatic failure leading to death.

Prophylaxis

In an open-label, comparative, multicenter study comparing voriconazole and itraconazole as primary prophylaxis in adult and adolescent allogeneic HSCT recipients without prior proven or probable IFI, permanent discontinuation of voriconazole due to AEs was reported in 39.3% of subjects versus 39.6% of subjects in the itraconazole arm. Treatment-emergent hepatic AEs resulted in permanent discontinuation of study medication for 50 subjects (21.4%) treated with voriconazole and for 18 subjects (7.1%) treated with itraconazole.

Paediatric population

The safety of voriconazole was investigated in 288 paediatric patients aged 2 to <12 years (169) and 12 to <18 years (119) who received voriconazole for prophylaxis (183) and therapeutic use (105) in clinical trials. The safety of voriconazole was also investigated in 158 additional paediatric patients aged 2 to <12 years in compassionate use programs. Overall the safety profile of voriconazole in paediatric population was similar to that in adults. However, a trend towards a higher frequency of liver enzyme elevations, reported as adverse events in clinical trials was observed in paediatric patients as compared to adults (14.2% transaminases increased in paediatrics compared to 5.3% in adults). Post-marketing data suggest there might be a higher occurrence of skin reactions (especially erythema) in the paediatric population compared to adults. In the 22 patients less than 2 years old who received voriconazole in a compassionate use programme, the following adverse reactions (for which a relationship to voriconazole could not be excluded) were reported: photosensitivity reaction (1), arrhythmia (1), pancreatitis (1), blood bilirubin increased (1), hepatic enzymes increased (1), rash (1) and papilloedema (1). There have been post-marketing reports of pancreatitis in paediatric patients.

OVERDOSE

In clinical trials there were 3 cases of accidental overdose. All occurred in paediatric patients, who received up to five times the recommended intravenous dose of voriconazole. A single adverse reaction of photophobia of 10 minutes' duration was reported.

There is no known antidote to voriconazole.

Voriconazole is haemodialysed with a clearance of 121 ml/min. The intravenous vehicle, SBECD, is haemodialysed with a clearance of 55 ml/min. In an overdose, haemodialysis may assist in the removal of voriconazole and SBECD from the body.

PHARMACOLOGICAL PROPERTIES

Pharmacodynamic properties

Pharmacotherapeutic group: Antimycotics for systemic use, triazole derivatives, ATC code: J02 AC03.

Mode of action

Voriconazole is a triazole antifungal agent. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates

with the subsequent loss of ergosterol in the fungal cell membrane and may be responsible for the antifungal activity of voriconazole. Voriconazole has been shown to be more selective for fungal cytochrome P-450 enzymes than for various mammalian cytochrome P-450 enzyme systems.

Pharmacokinetic/pharmacodynamic relationship

In 10 therapeutic studies, the median for the average and maximum plasma concentrations in individual subjects across the studies was 2425 ng/ml (inter-quartile range 1193 to 4380 ng/ml) and 3742 ng/ml (inter-quartile range 2027 to 6302 ng/ml), respectively. A positive association between mean, maximum or minimum plasma voriconazole concentration and efficacy in therapeutic studies was not found and this relationship has not been explored in prophylaxis studies.

Pharmacokinetic-Pharmacodynamic analyses of clinical trial data identified positive associations between plasma voriconazole concentrations and both liver function test abnormalities and visual disturbances. Dose adjustments in prophylaxis studies have not been explored.

Clinical efficacy and safety

In vitro, voriconazole displays broad-spectrum antifungal activity with antifungal potency against Candida species (including fluconazole- resistant C. krusei and resistant strains of C. glabrata and C. albicans) and fungicidal activity against all Aspergillus species tested. In addition, voriconazole shows in vitro fungicidal activity against emerging fungal pathogens, including those such as Scedosporium or Fusarium which have limited susceptibility to existing antifungal agents.

Clinical efficacy defined as partial or complete response, has been demonstrated for Aspergillus spp. including A. flavus, A. fumigatus, A. terreus, A. niger, A. nidulans; Candida spp., including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis; and limited numbers of C. dubliniensis, C. inconspicua and C. guilliermondii, Scedosporium spp., including S. apiospermum, S. prolificans; and Fusarium spp.

Other treated fungal infections (often with either partial or complete response) included isolated cases of Alternaria spp., Blastomyces dermatitidis, Blastoschizomyces capitatus, Cladosporium spp., Coccidioides immitis, Conidiobolus coronatus, Cryptococcus neoformans, Exserohilum rostratum, Exophiala spinifera, Fonsecaea pedrosoi, Madurella mycetomatis, Paecilomyces lilacinus, Penicillium spp. including P. marneffei, Phialophora richardsiae, Scopulariopsis brevicaulis and Trichosporon spp. including T. beigelii infections.

In vitro activity against clinical isolates has been observed for Acremonium spp., Alternaria spp., Bipolaris spp., Cladophialophora spp., and Histoplasma capsulatum, with most strains being inhibited by concentrations of voriconazole in the range 0.05 to $2 \mu g/ml$.

In vitro activity against the following pathogens has been shown, but the clinical significance is unknown: *Curvularia* spp. and *Sporothrix* spp.

Breakpoints

Specimens for fungal culture and other relevant laboratory studies (serology, histopathology) should be obtained prior to therapy to isolate and identify causative organisms. Therapy may

be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, anti-infective therapy should be adjusted accordingly.

The species most frequently involved in causing human infections include *C. albicans*, *C. parapsilosis*, *C. tropicalis*, *C. glabrata* and *C. krusei*, all of which usually exhibit minimal inhibitory concentration (MICs) of less than 1 mg/L for voriconazole.

However, the *in vitro* activity of voriconazole against *Candida* species is not uniform. Specifically, for *C. glabrata*, the MICs of voriconazole for fluconazole-resistant isolates are proportionally higher than are those of fluconazole-susceptible isolates. Therefore, every attempt should be made to identify *Candida* to species level. If antifungal susceptibility testing is available, the MIC results may be interpreted using breakpoint criteria established by European Committee on Antimicrobial Susceptibility Testing (EUCAST).

EUCAST Breakpoints

Candida species	MIC breakpoint (mg/L)		
	≤S (Susceptible)	>R (Resistant)	
Candida albicans ¹	0.125	0.125	
Candida tropicalis ¹	0.125	0.125	
Candida parapsilosis ¹	0.125	0.125	
Candida glabrata²	Insufficient evidence	Insufficient evidence	
Candida krusei ³	Insufficient evidence	Insufficient evidence	
Other Candida spp.4	Insufficient evidence	Insufficient evidence	

¹ Strains with MIC values above the Susceptible (S) breakpoint are rare, or not yet reported. The identification and antimicrobial susceptibility tests on any such isolate must be repeated and if the result is confirmed the isolate sent to a reference laboratory.

Clinical experience

Successful outcome in this section is defined as complete or partial response.

Aspergillus infections – efficacy in aspergillosis patients with poor prognosis

Voriconazole has *in vitro* fungicidal activity against *Aspergillus* spp. The efficacy and survival benefit of voriconazole versus conventional amphotericin B in the primary treatment of acute invasive aspergillosis was demonstrated in an open, randomised, multicentre study in 277 immunocompromised patients treated for 12 weeks. Voriconazole was administered intravenously with a loading dose of 6 mg/kg every 12 hours for the first 24 hours followed by a maintenance dose of 4 mg/kg every 12 hours for a minimum of 7 days. Therapy could then be switched to the oral formulation at a dose of 200 mg every 12 hours. Median duration of IV

² In clinical studies, response to voriconazole in patients with *C. glabrata* infections was 21% lower compared to *C. albicans, C. parapsilosis and C. tropicalis. In vitro* data showed a slight increase of resistance of *C. glabrata* to voriconazole.

³ In clinical studies, response to voriconazole in *C. krusei* infections was similar to *C. albicans, C. parapsilosis and C. tropicalis*. However, as there were only 9 cases available for EUCAST analysis, there is currently insufficient evidence to set clinical breakpoints for *C. krusei*

⁴ EUCAST has not determined non-species related breakpoints for voriconazole.

voriconazole therapy was 10 days (range 2-85 days). After IV voriconazole therapy, the median duration of oral voriconazole therapy was 76 days (range 2-232 days).

A satisfactory global response (complete or partial resolution of all attributable symptoms, signs, radiographic/bronchoscopic abnormalities present at baseline) was seen in 53% of voriconazole-treated patients compared to 31% of patients treated with comparator. The 84-day survival rate for voriconazole was statistically significantly higher than that for the comparator and a clinically and statistically significant benefit was shown in favour of voriconazole for both time to death and time to discontinuation due to toxicity.

This study confirmed findings from an earlier, prospectively designed study where there was a positive outcome in subjects with risk factors for a poor prognosis, including graft versus host disease, and, in particular, cerebral infections (normally associated with almost 100 % mortality).

The studies included cerebral, sinus, pulmonary and disseminated aspergillosis in patients with bone marrow and solid organ transplants, haematological malignancies, cancer and AIDS.

Candidaemia in non-neutropenic patients

The efficacy of voriconazole compared to the regimen of amphotericin B followed by fluconazole in the primary treatment of candidaemia was demonstrated in an open, comparative study. Three hundred and seventy non-neutropenic patients (above 12 years of age) with documented candidaemia were included in the study, of whom 248 were treated with voriconazole. Nine subjects in the voriconazole group and 5 in the amphotericin B followed by fluconazole group also had mycologically proven infection in deep tissue. Patients with renal failure were excluded from this study. The median treatment duration was 15 days in both treatment arms. In the primary analysis, successful response as assessed by a Data Review Committee (DRC) blinded to study medicinal product was defined as resolution/improvement in all clinical signs and symptoms of infection with eradication of *Candida* from blood and infected deep tissue sites 12 weeks after the end of therapy (EOT). Patients who did not have an assessment 12 weeks after EOT were counted as failures. In this analysis a successful response was seen in 41% of patients in both treatment arms.

In a secondary analysis, which utilised DRC assessments at the latest evaluable time point (EOT, or 2, 6, or 12 weeks after EOT) voriconazole and the regimen of amphotericin B followed by fluconazole had successful response rates of 65% and 71%, respectively. The Investigator's assessment of successful outcome at each of these time points is shown in the following table.

Timepoint	, , ,	Amphotericin $B \longrightarrow fluconazole (N=122)$
EOT	178 (72%)	88 (72%)
2 weeks after EOT	125 (50%)	62 (51%)
6 weeks after EOT	104 (42%)	55 (45%)
12 weeks after EOT	104 (42%)	51 (42%)

Serious refractory Candida infections

The study comprised 55 patients with serious refractory systemic *Candida* infections (including candidaemia, disseminated and other invasive candidiasis) where prior antifungal treatment, particularly with fluconazole, had been ineffective. Successful response was seen in

24 patients (15 complete, 9 partial responses). In fluconazole-resistant non- *albicans* species, a successful outcome was seen in 3/3 *C. krusei* (complete responses) and 6/8 *C. glabrata* (5 complete, 1 partial response) infections. The clinical efficacy data were supported by limited susceptibility data.

Scedosporium and Fusarium infections

Voriconazole was shown to be effective against the following rare fungal pathogens:

Scedosporium spp.: Successful response to voriconazole therapy was seen in 16 (6 complete, 10 partial responses) of 28 patients with *S. apiospermum* and in 2 (both partial responses) of 7 patients with *S. prolificans* infection. In addition, a successful response was seen in 1 of 3 patients with infections caused by more than one organism including *Scedosporium* spp.

Fusarium spp.: Seven (3 complete, 4 partial responses) of 17 patients were successfully treated with voriconazole. Of these 7 patients, 3 had eye, 1 had sinus, and 3 had disseminated infection. Four additional patients with fusariosis had an infection caused by several organisms; 2 of them had a successful outcome.

The majority of patients receiving voriconazole treatment of the above mentioned rare infections were intolerant of, or refractory to, prior antifungal therapy.

<u>Primary Prophylaxis of Invasive Fungal Infections – Efficacy in HSCT recipients without prior</u> proven or probable IFI

Voriconazole was compared to itraconazole as primary prophylaxis in an open-label, comparative, multicenter study of adult and adolescent allogeneic HSCT recipients without prior proven or probable IFI. Success was defined as the ability to continue study drug prophylaxis for 100 days after HSCT (without stopping for >14 days) and survival with no proven or probable IFI for 180 days after HSCT. The modified intent-to-treat (MITT) group included 465 allogeneic HSCT recipients with 45% of patients having AML. From all patients 58% were subject to myeloablative conditions regimens. Prophylaxis with study drug was started immediately after HSCT: 224 received voriconazole and 241 received itraconazole. The median duration of study drug prophylaxis was 96 days for voriconazole and 68 days for itraconazole in the MITT group.

Success rates and other secondary endpoints are presented in the table below:

Study Endpoints	Voriconazole N=224		Difference in proportions and the 95% confidence interval (CI)	
Success at day 180*	109 (48.7%)	80 (33.2%)	16.4% (7.7%, 25.1%)**	0.0002**
Success at day 100	121 (54.0%)	96 (39.8%)	15.4% (6.6%, 24.2%)**	0.0006**
Completed at least 100 days of study drug prophylaxis	120 (53.6%)	94 (39.0%)	14.6% (5.6%, 23.5%)	0.0015
Survived to day 180	184 (82.1%)	197 (81.7%)	0.4% (-6.6%, 7.4%)	0.9107
Developed proven or probable IFI to day 180	3 (1.3%)	5 (2.1%)	-0.7% (-3.1%, 1.6%)	0.5390
Developed proven or probable IFI to day 100	2 (0.9%)	4 (1.7%)	-0.8% (-2.8%, 1.3%)	0.4589

Developed proven or 0	3 (1.2%)	-1.2% (-2.6%, 0.2%)	0.0813
probable IFI while on study			
drug			

^{*} Primary endpoint of the study

AML

Study endpoints	Voriconazole (N=98)	(N=109)	Difference in proportions and the 95% confidence interval (CI)
Breakthrough IFI – Day 180	1 (1.0%)	2 (1.8%)	-0.8% (-4.0%, 2.4%) **
Success at Day 180*	55 (56.1%)	45 (41.3%)	14.7% (1.7%, 27.7%)***

^{*} Primary endpoint of study

Myeloablative conditioning regimens

Study endpoints		(N=143)	Difference in proportions and the 95% confidence interval (CI)
Breakthrough IFI – Day 180	2 (1.6%)	3 (2.1%)	-0.5% (-3.7%, 2.7%) **
Success at Day 180*	70 (56.0%)	53 (37.1%)	20.1% (8.5%, 31.7%)***

^{*} Primary endpoint of study

Secondary Prophylaxis of IFI – Efficacy in HSCT recipients with prior proven or probable IFI Voriconazole was investigated as secondary prophylaxis in an open-label, non-comparative, multicenter study of adult allogeneic HSCT recipients with prior proven or probable IFI. The primary endpoint was the rate of occurrence of proven and probable IFI during the first year after HSCT. The MITT group included 40 patients with prior IFI, including 31 with aspergillosis, 5 with candidiasis, and 4 with other IFI. The median duration of study drug prophylaxis was 95.5 days in the MITT group.

Proven or probable IFIs developed in 7.5% (3/40) of patients during the first year after HSCT, including one candidemia, one scedosporiosis (both relapses of prior IFI), and one zygomycosis. The survival rate at Day 180 was 80.0% (32/40) and at 1 year was 70.0% (28/40).

Duration of treatment

In clinical trials, 705 patients received voriconazole therapy for greater than 12 weeks, with 164 patients receiving voriconazole for over 6 months.

Paediatric population

Fifty-three paediatric patients aged 2 to <18 years were treated with voriconazole in two prospective, open-label, non-comparative, multi-center clinical trials. One study enrolled 31 patients with possible, proven or probable invasive aspergillosis (IA), of whom 14 patients had

^{**} Difference in proportions, 95% CI and p-values obtained after adjustment for randomization The breakthrough IFI rate to Day 180 and the primary endpoint of the study, which is Success at Day 180, for patients with AML and myeloablative conditioning regimens respectively, is presented in the table below:

^{**} Using a margin of 5%, non-inferiority is demonstrated

^{***}Difference in proportions, 95% CI obtained after adjustment for randomization

^{**} Using a margin of 5%, non-inferiority is demonstrated

^{***} Difference in proportions, 95% CI obtained after adjustment for randomization

proven or probable IA and were included in the MITT efficacy analyses. The second study enrolled 22 patients with invasive candidiasis including candidaemia (ICC), and esophageal candidiasis (EC) requiring either primary or salvage therapy, of whom 17 were included in the MITT efficacy analyses. For patients with IA the overall rates of global response at 6 weeks were 64.3% (9/14), the global response rate was 40% (2/5) for patients 2 to <12 years and 77.8% (7/9) for patients 12 to <18 years of age. For patients with ICC the global response rate at EOT was 85.7% (6/7) and for patients with EC the global response rate at EOT was 70% (7/10). The overall rate of response (ICC and EC combined) was 88.9% (8/9) for 2 to <12 years old and 62.5% (5/8) for 12 to <18 years old.

Clinical studies examining QTc interval

A placebo-controlled, randomized, single-dose, crossover study to evaluate the effect on the QTc interval of healthy volunteers was conducted with three oral doses of voriconazole and ketoconazole. The placebo-adjusted mean maximum increases in QTc from baseline after 800, 1200 and 1600 mg of voriconazole were 5.1, 4.8, and 8.2 msec, respectively and 7.0 msec for ketoconazole 800 mg. No subject in any group had an increase in QTc of \geq 60 msec from baseline. No subject experienced an interval exceeding the potentially clinically-relevant threshold of 500 msec.

Pharmacokinetic properties

General pharmacokinetic characteristics

The pharmacokinetics of voriconazole have been characterised in healthy subjects, special populations and patients. During oral administration of 200 mg or 300 mg twice daily for 14 days in patients at risk of aspergillosis (mainly patients with malignant neoplasms of lymphatic or haematopoietic tissue), the observed pharmacokinetic characteristics of rapid and consistent absorption, accumulation and non-linear pharmacokinetics were in agreement with those observed in healthy subjects.

The pharmacokinetics of voriconazole are non-linear due to saturation of its metabolism. Greater than proportional increase in exposure is observed with increasing dose. It is estimated that, on average, increasing the oral dose from 200 mg twice daily to 300 mg twice daily leads to a 2.5-fold increase in exposure (AUCt). The oral maintenance dose of 200 mg (or 100 mg for patients less than 40 kg) achieves a voriconazole exposure similar to 3 mg/kg IV. A 300 mg (or 150 mg for patients less than 40 kg) oral maintenance dose achieves an exposure similar to 4 mg/kg IV. When the recommended intravenous or oral loading dose regimens are administered, plasma concentrations close to steady state are achieved within the first 24 hours of dosing. Without the loading dose, accumulation occurs during twice daily multiple dosing with steady-state plasma voriconazole concentrations being achieved by Day 6 in the majority of subjects.

Absorption

Voriconazole is rapidly and almost completely absorbed following oral administration, with maximum plasma concentrations (C_{max}) achieved 1-2 hours after dosing. When multiple doses of voriconazole are administered with high fat meals, C_{max} and $AUC\tau$ are reduced by 34% and 24%, respectively. The absorption of voriconazole is not affected by changes in gastric pH.

Distribution

The volume of distribution at steady state for voriconazole is estimated to be 4.6 L/kg, suggesting extensive distribution into tissues. Plasma protein binding is estimated to be 58%.

Cerebrospinal fluid samples from eight patients in a compassionate programme showed detectable voriconazole concentrations in all patients.

Biotransformation

In vitro studies showed that voriconazole is metabolised by the hepatic cytochrome P450 isoenzymes CYP2C19, CYP2C9 and CYP3A4.

The inter-individual variability of voriconazole pharmacokinetics is high.

In vivo studies indicated that CYP2C19 is significantly involved in the metabolism of voriconazole. This enzyme exhibits genetic polymorphism. For example, 15-20% of Asian populations may be expected to be poor metabolisers. For Caucasians and Blacks the prevalence of poor metabolisers is 3-5%. Studies conducted in Caucasian and Japanese healthy subjects have shown that poor metabolisers have, on average, 4-fold higher voriconazole exposure (AUCt) than their homozygous extensive metaboliser counterparts. Subjects who are heterozygous extensive metabolisers have on average 2-fold higher voriconazole exposure than their homozygous extensive metaboliser counterparts.

The major metabolite of voriconazole is the N-oxide, which accounts for 72% of the circulating radiolabelled metabolites in plasma. This metabolite has minimal antifungal activity and does not contribute to the overall efficacy of voriconazole.

Elimination

Voriconazole is eliminated via hepatic metabolism with less than 2% of the dose excreted unchanged in the urine.

After administration of a radiolabelled dose of voriconazole, approximately 80% of the radioactivity is recovered in the urine after multiple intravenous dosing and 83% in the urine after multiple oral dosing. The majority (>94%) of the total radioactivity is excreted in the first 96 hours after both oral and intravenous dosing. The terminal half-life of voriconazole depends on dose and is approximately 6 hours at 200 mg (orally). Because of non-linear pharmacokinetics, the terminal half-life is not useful in the prediction of the accumulation or elimination of voriconazole.

Pharmacokinetics in special patient groups

Gender

In an oral multiple-dose study, C_{max} and $AUC\tau$ for healthy young females were 83% and 113% higher, respectively, than in healthy young males (18-45 years). In the same study, no significant differences in C_{max} and $AUC\tau$ were observed between healthy elderly males and healthy elderly females (\geq 65 years).

In the clinical programme, no dosage adjustment was made on the basis of gender. The safety profile and plasma concentrations observed in male and female patients were similar. Therefore, no dosage adjustment based on gender is necessary.

Elderly

In an oral multiple-dose study C_{max} and $AUC\tau$ in healthy elderly males (\geq 65 years) were 61% and 86% higher, respectively, than in healthy young males (18-45 years). No significant differences in C_{max} and $AUC\tau$ were observed between healthy elderly females (\geq 65 years) and healthy young females (18-45 years).

In the therapeutic studies no dosage adjustment was made on the basis of age. A relationship between plasma concentrations and age was observed. The safety profile of voriconazole in young and elderly patients was similar and, therefore, no dosage adjustment is necessary for the elderly.

Voriconazole exposures in the majority of adolescent patients were comparable to those in adults receiving the same dosing regimens. However, lower voriconazole exposure was observed in some young adolescents with low body weight compared to adults. It is likely that these subjects may metabolize voriconazole more similarly to children than to adults. Based on the population pharmacokinetic analysis, 12- to 14-year-old adolescents weighing less than 50 kg should receive children's doses.

Renal impairment

In an oral single-dose (200 mg) study in subjects with normal renal function and mild (creatinine clearance 41-60 ml/min) to severe (creatinine clearance < 20 ml/min) renal impairment, the pharmacokinetics of voriconazole were not significantly affected by renal impairment. The plasma protein binding of voriconazole was similar in subjects with different degrees of renal impairment.

Hepatic impairment

After an oral single-dose (200 mg), AUC was 233% higher in subjects with mild to moderate hepatic cirrhosis (Child-Pugh A and B) compared with subjects with normal hepatic function. Protein binding of voriconazole was not affected by impaired hepatic function.

In an oral multiple-dose study, AUCt was similar in subjects with moderate hepatic cirrhosis (Child-Pugh B) given a maintenance dose of 100 mg twice daily and subjects with normal hepatic function given 200 mg twice daily. No pharmacokinetic data are available for patients with severe hepatic cirrhosis (Child-Pugh C)

PRECLINICAL SAFETY DATA

Repeated-dose toxicity studies with voriconazole indicated the liver to be the target organ. Hepatotoxicity occurred at plasma exposures similar to those obtained at therapeutic doses in humans, in common with other antifungal agents. In rats, mice and dogs, voriconazole also induced minimal adrenal changes. Conventional studies of safety pharmacology, genotoxicity or carcinogenic potential did not reveal a special hazard for humans.

In reproduction studies, voriconazole was shown to be teratogenic in rats and embryotoxic in rabbits at systemic exposures equal to those obtained in humans with therapeutic doses. In the pre- and post-natal development study in rats at exposures lower than those obtained in humans with therapeutic doses, voriconazole prolonged the duration of gestation and labour and produced dystocia with consequent maternal mortality and reduced perinatal survival of pups. The effects on parturition are probably mediated by species-specific mechanisms, involving reduction of oestradiol levels, and are consistent with those observed with other azole antifungal agents. Voriconazole administration induced no impairment of male or female fertility in rats at exposures similar to those obtained in humans at therapeutic doses.

EXPIRY DATE

Do not use later than the date of expiry.

PACKAGING INFORMATION

VHOPE 200 is available as blister strip of 4 tablets.

STORAGE AND HANDLING INSTRUCTIONS

Store below 25°C, in a dry place, protected from light. Keep out of reach of children.

MARKETED BY

TORRENT PHARMACEUTICALS LTD. Torrent House, Off Ashram Road, Ahmedabad-380 009, INDIA

IN/VHOPE 200mg/ AUG-16/02/PI