DEPLATT-CV

1. Generic Name

Clopidogrel Bisulphate with Atorvastatin and Aspirin Capsules

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Deplatt CV

Approved colours used in hard gelatin capsule shell.

The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Lake of Ponceau 4R, Red Oxide of Iron, Purified water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

Deplatt CV 20

The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon

dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Purified water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

3. DOSAGE FORM AND STRENGTH

Deplatt CV

DOSAGE: Hard gelatin capsule

STRENGTH: Clopidogrel 75 mg, Atorvastatin 10 mg and Aspirin 75 mg

Deplatt CV 20

DOSAGE: Hard gelatin capsule

STRENGTH: Clopidogrel 75 mg, Atorvastatin 20 mg and Aspirin 75 mg

4. CLINICAL PARTICULARS

4.1 Therapeutic Indication

In the treatment of patients with PCI (Percutaneous coronary intervention) and myocardial infarction (MI).

4.2 Posology and Method of Administration

Dosage: As directed by the Physician.

4.3 Contraindications

Aspirin and Clopidogrel Capsule

- Hypersensitivity to salicylic acid compounds or prostaglandin synthetase inhibitors (e.g. certain asthma patients who may suffer an attack or faint and certain patients who may suffer from bronchospasm, rhinitis and urticaria) active substance and to any of the excipients;
- Active, or history of recurrent peptic ulcer and/or gastric/intestinal haemorrhage, or other kinds of bleeding such as cerebrovascular haemorrhages;
- Haemorrhagic diathesis; coagulation disorders such as haemophilia and thrombocytopenia;
- Patients who are suffering from gout;
- Severe renal impairment;
- Severe hepatic impairment
- Doses >100 mg/day during the third trimester of pregnancy
- Methotrexate used at doses >15mg/week

Atorvastatin

- Contraindicated in patients:
- with hypersensitivity to the active substance or to any of the excipients listed in
- with active liver disease or unexplained persistent elevations of serum transaminases exceeding 3 times the upper limit of normal
- during pregnancy, while breast-feeding and in women of child-bearing potential not using appropriate contraceptive measures
- treated with the hepatitis C antivirals glecaprevir/pibrentasvir
- When Ezetimibe is co-administered with a statin, please refer to the SPC for that particular medicinal product.
- Therapy with Ezetimibe co-administered with a statin is contraindicated during pregnancy and lactation.

• Ezetimibe co-administered with a statin is contraindicated in patients with active liver disease or unexplained persistent elevations in serum transaminases.

4.4 Special warnings and precautions for use

Clopidogrel

Bleeding and haematological disorders

Due to the risk of bleeding and haematological adverse reactions, blood cell count determination and/or other appropriate testing should be promptly considered whenever clinical symptoms suggestive of bleeding arise during the course of treatment. As with other antiplatelet agents, clopidogrel should be used with caution in patients who may be at risk of increased bleeding from trauma, surgery or other pathological conditions and in patients receiving treatment with ASA, heparin, glycoprotein IIb/IIIa inhibitors or non-steroidal anti-inflammatory drugs (NSAIDs) including Cox-2 inhibitors, or selective serotonin reuptake inhibitors (SSRIs), or other medicinal products associated with bleeding risk such as pentoxifylline. Patients should be followed carefully for any signs of bleeding including occult bleeding, especially during the first weeks of treatment and/or after invasive cardiac procedures or surgery. The concomitant administration of clopidogrel with oral anticoagulants is not recommended since it may increase the intensity of bleedings.

If a patient is to undergo elective surgery and antiplatelet effect is temporarily not desirable, clopidogrel should be discontinued 7 days prior to surgery. Patients should inform physicians and dentists that they are taking clopidogrel before any surgery is scheduled and before any new medicinal product is taken. Clopidogrel prolongs bleeding time and should be used with caution in patients who have lesions with a propensity to bleed (particularly gastrointestinal and intraocular).

Patients should be told that it might take longer than usual to stop bleeding when they take clopidogrel (alone or in combination with ASA), and that they should report any unusual bleeding (site or duration) to their physician.

Thrombotic Thrombocytopenic Purpura (TTP)

Thrombotic Thrombocytopenic Purpura (TTP) has been reported very rarely following the use of clopidogrel, sometimes after a short exposure. It is characterised by thrombocytopenia and microangiopathic haemolytic anaemia associated with either neurological findings, renal dysfunction or fever. TTP is a potentially fatal condition requiring prompt treatment including plasmapheresis.

Acquired haemophilia

Acquired haemophilia has been reported following use of clopidogrel. In cases of confirmed isolated activated Partial Thromboplastin Time (aPTT) prolongation with or without bleeding, acquired haemophilia should be considered. Patients with a confirmed diagnosis of acquired haemophilia should be managed and treated by specialists, and clopidogrel should be discontinued.

Recent ischaemic stroke

In view of the lack of data, clopidogrel cannot be recommended during the first 7 days after acute ischaemic stroke.

Cytochrome P450 2C19 (CYP2C19)

Pharmacogenetics: In patients who are poor CYP2C19 metabolisers, clopidogrel at recommended doses forms less of the active metabolite of clopidogrel and has a smaller effect on platelet function. Tests are available to identify a patient's CYP2C19 genotype.

Since clopidogrel is metabolised to its active metabolite partly by CYP2C19, use of medicinal products that inhibit the activity of this enzyme would be expected to result in reduced drug levels of the active metabolite of clopidogrel. The clinical relevance of this interaction is uncertain. As a precaution concomitant use of strong or moderate CYP2C19 inhibitors should be discouraged.

CYP2C8 substrates

Caution is required in patients treated concomitantly with clopidogrel and CYP2C8 substrate medicinal products.

Cross-reactions among thienopyridines

Patients should be evaluated for history of hypersensitivity to thienopyridines (such as clopidogrel, ticlopidine, prasugrel) since cross-reactivity among thienopyridines has been reported. Thienopyridines may cause mild to severe allergic reactions such as rash, angioedema, or haematological cross-reactions such as thrombocytopenia and neutropenia. Patients who had developed a previous allergic reaction and/or haematological reaction to one thienopyridine may have an increased risk of developing the same or another reaction to another thienopyridine. Monitoring for signs of hypersensitivity in patients with a known allergy to thienopyridines is advised.

Renal impairment

Therapeutic experience with clopidogrel is limited in patients with renal impairment. Therefore, clopidogrel should be used with caution in these patients.

Hepatic impairment

Experience is limited in patients with moderate hepatic disease who may have bleeding diatheses. Clopidogrel should therefore be used with caution in this population.

Aspirin

Aspirin capsule is not suitable for use as an anti-inflammatory/ analgesic/ antipyretic.

Caution should be exercised in patients with allergic disease, impairment of hepatic or renal function (avoid if severe) and dehydration, since the use of NSAIDs may result in deterioration of renal function. Liver function tests should be performed regularly in patients presenting slight or moderate hepatic insufficiency.

Aspirin may also precipitate bronchospasm or induce attacks of asthma in susceptible subjects or promote other hypersensitivity reactions. Risk factors are existing asthma, hay fever, nasal polyps or chronic respiratory diseases. The same applies for patients who also show allergic reaction to other substances (e.g. with skin reactions, itching or urticaria).

Serious skin reactions, including Steven-Johnsons syndrome, have rarely been reported in association with the use of acetylsalicylic acid. Aspirin Capsule should be discontinued at the first appearance of skin rash, mucosal lesions, or any other sign of hypersensitivity.

The elderly may be more susceptible to the toxic effects of salicylates. Continuous prolonged use of aspirin should be avoided in the elderly because of the risk of

gastrointestinal bleeding and perforation which may be fatal. Where prolonged therapy is required, patients should be reviewed regularly.

Caution should be taken in patients with glucose-6-phosphate dehydrogenase deficiency as haemolytic anaemia may occur

Aspirin capsule is not recommended during menorrhagia where it may increase menstrual bleeding.

Aspirin prolongs bleeding time, mainly by inhibiting platelet aggregation and therefore it should be discontinued several days before scheduled surgical procedures. Haematological and haemorrhagic effects can occur, and may be severe. Use with caution before surgery, including tooth extraction. Patients should report any unusual bleeding symptoms to their physician.

Care is advised when stopping antiplatelet therapy after stent insertion either after a fixed period of time or in preparation for a planned surgical procedure, as the balance between stent thrombosis and excessive bleeding has to be carefully assessed.

Inappropriate use of aspirin in children under 12 years-of-age indicates that health education about the possible risks of Reye's Syndrome needs to be improved.

Aspirin is to be used with caution in cases of hypertension and patients with a stomach ulcer or a history of stomach ulcers or duodenal ulcer or haemorrhagic episodes or undergoing therapy with anticoagulants. Patients should report any unusual bleeding symptoms to their physician. If gastrointestinal bleeding or ulceration occurs the treatment should be withdrawn.

Before commencing long term aspirin therapy for the management of cardiovascular or cerebrovascular disease patients should consult their doctor who can advise on the relative benefits versus the risks for the individual patient.

Concomitant treatment with Aspirin and other drugs that alter haemostasis (i.e. anticoagulants such as warfarin, thrombolytic and antiplatelet agents, anti-inflammatory drugs and selective serotonin reuptake inhibitors) is not recommended, unless strictly indicated, because they may enhance the risk of haemorrhage. If the combination cannot be avoided, close observation for signs of bleeding is recommended.

Caution should be advised in patients receiving concomitant medications which could increase the risk of ulceration, such as oral corticosteroids, selective serotonin-reuptake inhibitors and deferasirox.

Acetylsalicylic acid in low doses reduces uric acid excretion. Due to this fact, patients who tend to have reduced uric acid excretion may experience gout attacks.

The risk of hypoglycaemic effect with sulfonylureas and insulins may be potentiated with Aspirin capsule taken at over dosage.

Aspirin should be avoided in late pregnancy and generally during breast feeding.

This medicine contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicine.

Atorvastatin

<u>Liver effects</u>

Liver function tests should be performed before the initiation of treatment and periodically

thereafter. Patients who develop any signs or symptoms suggestive of liver injury should have liver function tests performed. Patients who develop increased transaminase levels should be monitored until the abnormality(ies) resolve. Should an increase in transaminases of greater than 3 times the upper limit of normal (ULN) persist, reduction of dose or withdrawal of Atorvastatin is recommended.

Atorvastatin should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of liver disease.

Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL)

In a post-hoc analysis of stroke subtypes in patients without coronary heart disease (CHD) who had a recent stroke or transient ischemic attack (TIA) there was a higher incidence of hemorrhagic stroke in patients initiated on atorvastatin 80 mg compared to placebo. The increased risk was particularly noted in patients with prior hemorrhagic stroke or lacunar infarct at study entry. For patients with prior hemorrhagic stroke or lacunar infarct, the balance of risks and benefits of atorvastatin 80 mg is uncertain, and the potential risk of hemorrhagic stroke should be carefully considered before initiating treatment.

Skeletal muscle effects

Atorvastatin, like other HMG-CoA reductase inhibitors, may in rare occasions affect the skeletal muscle and cause myalgia, myositis, and myopathy that may progress to rhabdomyolysis, a potentially life-threatening condition characterised by markedly elevated creatine kinase (CK) levels (> 10 times ULN), myoglobinaemia and myoglobinuria which may lead to renal failure.

There have been very rare reports of an immune mediated necrotizing myopathy (IMNM) during or after treatment with some statins. IMNM is clinically characterised by persistent proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment.

Before the treatment

Atorvastatin should be prescribed with caution in patients with pre-disposing factors for rhabdomyolysis. A CK level should be measured before starting statin treatment in the following situations:

- Renal impairment
- Hypothyroidism
- Personal or familial history of hereditary muscular disorders
- Previous history of muscular toxicity with a statin or fibrate
- Previous history of liver disease and/or where substantial quantities of alcohol are consumed
- In elderly (age > 70 years), the necessity of such measurement should be considered, according to the presence of other predisposing factors for rhabdomyolysis
- Situations where an increase in plasma levels may occur, such as interactions and special populations including genetic subpopulations

In such situations, the risk of treatment should be considered in relation to possible benefit, and clinical monitoring is recommended.

If CK levels are significantly elevated (> 5 times ULN) at baseline, treatment should not be started.

Creatine kinase measurement

Creatine kinase (CK) should not be measured following strenuous exercise or in the presence of any plausible alternative cause of CK increase as this makes value interpretation difficult. If CK levels are significantly elevated at baseline (> 5 times ULN), levels should be remeasured within 5 to 7 days later to confirm the results.

Whilst on treatment

- Patients must be asked to promptly report muscle pain, cramps, or weakness especially if accompanied by malaise or fever.
- If such symptoms occur whilst a patient is receiving treatment with atorvastatin, their CK levels should be measured. If these levels are found to be significantly elevated (> 5 times ULN), treatment should be stopped.
- If muscular symptoms are severe and cause daily discomfort, even if the CK levels are elevated to \leq 5 x ULN, treatment discontinuation should be considered.
- If symptoms resolve and CK levels return to normal, then re-introduction of atorvastatin or introduction of an alternative statin may be considered at the lowest dose and with close monitoring.
- Atorvastatin must be discontinued if clinically significant elevation of CK levels (> 10 x ULN) occur, or if rhabdomyolysis is diagnosed or suspected.

Concomitant treatment with other medicinal products

Risk of rhabdomyolysis is increased when atorvastatin is administered concomitantly with certain medicinal products that may increase the plasma concentration of atorvastatin such as potent inhibitors of CYP3A4 or transport proteins (e.g. ciclosporin, telithromycin, clarithromycin, delavirdine, stiripentol, ketoconazole, voriconazole, itraconazole, posaconazole and HIV protease inhibitors including ritonavir, lopinavir, atazanavir, indinavir, darunavir, tipranavir/ritonavir, etc). The risk of myopathy may also be increased with the concomitant use of gemfibrozil and other fibric acid derivates, antivirals for the treatment of hepatitis C (HCV) (boceprevir, telaprevir, elbasvir/grazoprevir), erythromycin, niacin, or ezetimibe. If possible, alternative (non-interacting) therapies should be considered instead of these medicinal products.

In cases where co-administration of these medicinal products with atorvastatin is necessary, the benefit and the risk of concurrent treatment should be carefully considered. When patients are receiving medicinal products that increase the plasma concentration of atorvastatin, a lower maximum dose of atorvastatin is recommended. In addition, in the case of potent CYP3A4 inhibitors, a lower starting dose of atorvastatin should be considered and appropriate clinical monitoring of these patients is recommended.

Atorvastatin must not be co-administered with systemic formulations of fusidic acid or within 7 days of stopping fusidic acid treatment. In patients where the use of systemic fusidic acid is considered essential, statin treatment should be discontinued throughout the duration of fusidic acid treatment. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving fusidic acid and statins in combination. The patient should be advised to seek medical advice immediately if they experience any symptoms of muscle weakness, pain or tenderness.

Statin therapy may be re-introduced seven days after the last dose of fusidic acid.

In exceptional circumstances, where prolonged systemic fusidic acid is needed, e.g., for the treatment of severe infections, the need for co-administration of Atorvastatin and fusidic acid should only be considered on a case by case basis and under close medical supervision.

Paediatric population

No clinically significant effect on growth and sexual maturation was observed in a 3-year study based on the assessment of overall maturation and development, assessment of Tanner Stage, and measurement of height and weight.

Interstitial lung disease

Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy. Presenting features can include dyspnoea, non-productive cough and deterioration in general health (fatigue, weight loss and fever). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.

Diabetes Mellitus

Some evidence suggests that statins as a class raise blood glucose and in some patients, at high risk of future diabetes, may produce a level of hyperglycaemia where formal diabetes care is appropriate. This risk, however, is outweighed by the reduction in vascular risk with statins and therefore should not be a reason for stopping statin treatment. Patients at risk (fasting glucose 5.6 to 6.9 mmol/L, BMI>30kg/m², raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.

Excipients

Atorvastatin contains lactose. Patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

4.5 Drugs Interaction

Clopidogrel

Medicinal products associated with bleeding risk: There is an increased risk of bleeding due to the potential additive effect. The concomitant administration of medicinal products associated with bleeding risk should be undertaken with caution.

Oral anticoagulants: the concomitant administration of clopidogrel with oral anticoagulants is not recommended since it may increase the intensity of bleedings. Although the administration of clopidogrel 75 mg/day did not modify the pharmacokinetics of S-warfarin or International Normalised Ratio (INR) in patients receiving long-term warfarin therapy, coadministration of clopidogrel with warfarin increases the risk of bleeding because of independent effects on hemostasis.

Glycoprotein IIb/IIIa inhibitors: clopidogrel should be used with caution in patients who receive concomitant glycoprotein IIb/IIIa inhibitors.

Acetylsalicylic acid (ASA): ASA did not modify the clopidogrel-mediated inhibition of ADPinduced platelet aggregation, but clopidogrel potentiated the effect of ASA on collageninduced platelet aggregation. However, concomitant administration of 500 mg of ASA twice a day for one day did not significantly increase the prolongation of bleeding time induced by clopidogrel intake. A pharmacodynamic interaction between clopidogrel and acetylsalicylic acid is possible, leading to increased risk of bleeding. Therefore, concomitant

use should be undertaken with caution. However, clopidogrel and ASA have been administered together for up to one year.

Heparin: in a clinical study conducted in healthy subjects, clopidogrel did not necessitate modification of the heparin dose or alter the effect of heparin on coagulation. Co-administration of heparin had no effect on the inhibition of platelet aggregation induced by clopidogrel. A pharmacodynamic interaction between clopidogrel and heparin is possible, leading to increased risk of bleeding. Therefore, concomitant use should be undertaken with caution.

Thrombolytics: the safety of the concomitant administration of clopidogrel, fibrin or non-fibrin specific thrombolytic agents and heparins was assessed in patients with acute myocardial infarction. The incidence of clinically significant bleeding was similar to that observed when thrombolytic agents and heparin are co-administered with ASA.

NSAIDs: in a clinical study conducted in healthy volunteers, the concomitant administration of clopidogrel and naproxen increased occult gastrointestinal blood loss. However, due to the lack of interaction studies with other NSAIDs it is presently unclear whether there is an increased risk of gastrointestinal bleeding with all NSAIDs. Consequently, NSAIDs including Cox-2 inhibitors and clopidogrel should be co-administered with caution.

SSRIs: since SSRIs affect platelet activation and increase the risk of bleeding, the concomitant administration of SSRIs with clopidogrel should be undertaken with caution.

Other concomitant therapy: Since clopidogrel is metabolised to its active metabolite partly by CYP2C19, use of medicinal products that inhibit the activity of this enzyme would be expected to result in reduced drug levels of the active metabolite of clopidogrel. The clinical relevance of this interaction is uncertain. As a precaution concomitant use of strong or moderate CYP2C19 inhibitors should be discouraged.

Medicinal products that are strong or moderate CYP2C19 inhibitors include, for example, omeprazole and esomeprazole, fluvoxamine, fluoxetine, moclobemide, voriconazole, fluconazole, ticlopidine, carbamazepine, and efavirenz.

Proton Pump Inhibitors (PPI):

Omeprazole 80 mg once daily administered either at the same time as clopidogrel or with 12 hours between the administrations of the two drugs decreased the exposure of the active metabolite by 45% (loading dose) and 40% (maintenance dose). The decrease was associated with a 39% (loading dose) and 21% (maintenance dose) reduction of inhibition of platelet aggregation. Esomeprazole is expected to give a similar interaction with clopidogrel.

Inconsistent data on the clinical implications of this pharmacokinetic (PK)/pharmacodynamic (PD) interaction in terms of major cardiovascular events have been reported from both observational and clinical studies. As a precaution, concomitant use of omeprazole or esomeprazole should be discouraged.

Less pronounced reductions of metabolite exposure have been observed with pantoprazole or lansoprazole. The plasma concentrations of the active metabolite were 20% reduced (loading dose) and 14% reduced (maintenance dose) during concomitant treatment with pantoprazole 80 mg once daily. This was associated with a reduction of the mean inhibition of platelet aggregation by 15% and 11%, respectively. These results indicate that clopidogrel can be administered with pantoprazole.

There is no evidence that other medicinal products that reduce stomach acid such as H2 blockers or antacids interfere with antiplatelet activity of clopidogrel.

Other medicinal products: A number of other clinical studies have been conducted with clopidogrel and other concomitant medicinal products to investigate the potential for pharmacodynamic and pharmacokinetic interactions. No clinically significant pharmacodynamic interactions were observed when clopidogrel was co-administered with atenolol, nifedipine, or both atenolol and nifedipine. Furthermore, the pharmacodynamic activity of clopidogrel was not significantly influenced by the co-administration of phenobarbital or oestrogen.

The pharmacokinetics of digoxin or theophylline were not modified by the co-administration of clopidogrel. Antacids did not modify the extent of clopidogrel absorption. Data from the CAPRIE study indicate that phenytoin and tolbutamide which are metabolised by CYP2C9 can be safely co-administered with clopidogrel.

CYP2C8 substrate medicinal products: Clopidogrel has been shown to increase repaglinide exposure in healthy volunteers. *In vitro* studies have shown the increase in repaglinide exposure is due to inhibition of CYP2C8 by the glucuronide metabolite of clopidogrel. Due to the risk of increased plasma concentrations, concomitant administration of clopidogrel and drugs primarily cleared by CYP2C8 metabolism (e.g., repaglinide, paclitaxel) should be undertaken with caution.

Apart from the specific medicinal product interaction information described above, interaction studies with clopidogrel and some medicinal products commonly administered in patients with atherothrombotic disease have not been performed. However, patients entered into clinical trials with clopidogrel received a variety of concomitant medicinal products including diuretics, beta blockers, ACEI, calcium antagonists, cholesterol lowering agents, coronary vasodilators, antidiabetic agents (including insulin), antiepileptic agents and GPIIb/IIIa antagonists without evidence of clinically significant adverse interactions.

Aspirin

Contraindicated combinations

Methotrexate (used at doses >15 mg/week):

The combined drugs, methotrexate and acetylsalicylic acid, enhance haematological toxicity of methotrexate due to the decreased renal clearance of methotrexate by acetylsalicylic acid. Therefore, the concomitant use of methotrexate (at doses >15 mg/week) with Aspirin capsule is contraindicated.

Not recommended combinations

Uricosuric agents, e.g. probenecid and sulfinpyrazone:

Salicylates reverse the effect of probenecid and sulfinpyrazone. The combination should be avoided.

Combinations requiring precautions for use or to be taken into account

Anticoagulants e.g. coumarin, heparin, warfarin and phenindione:

Increased risk of bleeding due to inhibited thrombocyte function, injury of the duodenal mucosa and displacement of oral anticoagulants from their plasma protein binding sites. The bleeding time should be monitored.

Anti-platelet agents (e.g. clopidogrel and dipyridamole) and selective serotonin re-uptake inhibitors (SSRIs; such as sertraline or paroxetine):

Increased risk of gastrointestinal bleeding.

Antidiabetics, e.g. sulphonylureas:

Salicylic may increase the hypoglycaemic effect of sulphonylureas.

Digoxin and lithium:

Acetylsalicylic acid impairs the renal excretion of digoxin and lithium, resulting in increased plasma concentrations. Monitoring of plasma concentrations of digoxin and lithium is recommended when initiating and terminating treatment with acetylsalicylic acid. Dose adjustment may be necessary.

Diuretics and antihypertensive:

NSAIDs may decrease the antihypertensive effects of diuretics and other antihypertensive agents. Patients with hypertension should be carefully monitored. As for other NSAIDs concomitant administration with ACE-inhibitors increases the risk of acute renal insufficiency. Diuretics: Risk of acute renal failure due to the decreased glomerular filtration via decreased renal prostaglandin synthesis. Hydrating the patient and monitoring renal function at the start of the treatment is recommended.

Other non-steroidal anti-inflammatory drugs (NSAIDs):

Concurrent administration can increase side effects. Use of two or more NSAIDs increases risk of gastrointestinal haemorrhage.

Ibuprofen:

Experimental data suggest that ibuprofen may inhibit the effect of low dose aspirin on platelet aggregation when they are dosed concomitantly. However, the limitations of these data and the uncertainties regarding extrapolation of ex vivo data to the clinical situation imply that no firm conclusions can be made for regular ibuprofen use, and no clinically relevant effect is considered to be likely for occasional ibuprofen use.

Ciclosporin, tacrolimus:

Concomitant use of NSAIDs and ciclosporin or tacrolimus may increase the nephrotoxic effect of ciclosporin and tacrolimus. The renal function should be monitored in case of concomitant use of these agents and acetylsalicylic acid.

Systemic Corticosteroids:

The risk of gastrointestinal bleeding and ulceration is increased when acetylsalicylic acid and corticostetoids are co-administered. Corticosteroids reduce the plasma salicylate concentration and salicylate toxicity may occur following withdrawal of corticosteroids.

Methotrexate (used at doses <15 mg/week):

The combined drugs, methotrexate and acetylsalicylic acid, may increase haematological toxicity of methotrexate due to decreased renal clearance of methotrexate by acetylsalicylic acid. Weekly blood count checks should be done during the first weeks of the combination. Enhanced monitoring should take place in the presence of even mildly impaired renal function, as well, as in elderly.

Carbonic anhydrase inhibitors:

Reduced excretion of acetazolamide; salicylate intoxication has occurred in patients on high dose salicylate regimes and carbonic anhydrase inhibitors. Concurrent administration of carbonic anhydrase inhibitors such as acetazolamide and salicylates may result in severe acidosis and increased central nervous system toxicity.

Antacids and adsorbents:

The excretion of aspirin is increased in alkaline urine; kaolin possibly reduces absorption. Antacids will reduce the effect of aspirin. Principle incompatibilities are iron salts, carbonates and alkali hydroxides.

Mifepristone:

The manufacturer of mifepristone recommends that aspirin should be avoided until eight to twelve days after mifepristone has been discontinued.

Alcohol:

Concomitant administration of alcohol and acetylsalicylic acid increases the risk of gastrointestinal bleeding.

Antiemetics:

Metoclopramide enhances the effects of aspirin by increasing the rate of absorption.

Anti-epileptics:

Salicylate diminishes the binding of phenytoin to plasma albumin. This may lead to decreased total phenytoin levels in plasma, but increased free phenytoin fraction. The unbound concentration, and thereby the therapeutic effect, does not appear to be significantly altered. Acetylsalicylic acid has been reported to decrease the binding of valproate to serum albumin, thereby increasing its free plasma concentrations at steady state.

Leukotriene antagonists:

The plasma concentration of zafirlukst is increased.

Antibacterials:

The toxicity of sulphonamides may be increased.

Thyroid function tests:

Aspirin may interfere with thyroid function tests.

Atorvastatin

Effect of co-administered medicinal products on atorvastatin

Atorvastatin is metabolised by cytochrome P450 3A4 (CYP3A4) and is a substrate of the hepatic transporters, organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3) transporter. Metabolites of atorvastatin are substrates of OATP1B1. Atorvastatin is also identified as a substrate of the multi-drug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), which may limit the intestinal absorption and biliary clearance of atorvastatin. Concomitant administration of medicinal products that are inhibitors of CYP3A4 or transport proteins may lead to increased plasma concentrations of atorvastatin and an increased risk of myopathy. The risk might also be increased at concomitant administration of atorvastatin with other medicinal products that have a potential to induce myopathy, such as fibric acid derivates and ezetimibe.

CYP3A4 inhibitors

Potent CYP3A4 inhibitors have been shown to lead to markedly increased concentrations of atorvastatin (see Table 1 and specific information below). Co-administration of potent

CYP3A4 inhibitors (e.g. ciclosporin, telithromycin, clarithromycin, delavirdine, stiripentol, ketoconazole, voriconazole, itraconazole, posaconazole, some antivirals used in the treatment of HCV (e.g., elbasvir/grazoprevir), and HIV protease inhibitors including ritonavir, lopinavir, atazanavir, indinavir, darunavir, etc.) should be avoided if possible. In cases where co-administration of these medicinal products with atorvastatin cannot be avoided lower starting and maximum doses of atorvastatin should be considered and appropriate clinical monitoring of the patient is recommended (see Table 1).

Moderate CYP3A4 inhibitors (e.g. erythromycin, diltiazem, verapamil and fluconazole) may increase plasma concentrations of atorvastatin (see Table 1). An increased risk of myopathy has been observed with the use of erythromycin in combination with statins. Interaction studies evaluating the effects of amiodarone or verapamil on atorvastatin have not been conducted. Both amiodarone and verapamil are known to inhibit CYP3A4 activity and co-administration with atorvastatin may result in increased exposure to atorvastatin. Therefore, a lower maximum dose of atorvastatin should be considered and appropriate clinical monitoring of the patient is recommended when concomitantly used with moderate CYP3A4 inhibitors. Appropriate clinical monitoring is recommended after initiation or following dose adjustments of the inhibitor.

CYP3A4 inducers

Concomitant administration of atorvastatin with inducers of cytochrome P450 3A (e.g. efavirenz, rifampin, St. John's Wort) can lead to variable reductions in plasma concentrations of atorvastatin. Due to the dual interaction mechanism of rifampin, (cytochrome P450 3A induction and inhibition of hepatocyte uptake transporter OATP1B1), simultaneous co-administration of atorvastatin with rifampin is recommended, as delayed administration of atorvastatin after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations. The effect of rifampin on atorvastatin concentrations in hepatocytes is, however, unknown and if concomitant administration cannot be avoided, patients should be carefully monitored for efficacy.

Transport inhibitors

Inhibitors of transport proteins (e.g. ciclosporin) can increase the systemic exposure of atorvastatin (see Table 1). The effect of inhibition of hepatic uptake transporters on atorvastatin concentrations in hepatocytes is unknown. If concomitant administration cannot be avoided, a dose reduction and clinical monitoring for efficacy is recommended (see Table 1).

Gemfibrozil / fibric acid derivatives

The use of fibrates alone is occasionally associated with muscle related events, including rhabdomyolysis. The risk of these events may be increased with the concomitant use of fibric acid derivatives and atorvastatin. If concomitant administration cannot be avoided, the lowest dose of atorvastatin to achieve the therapeutic objective should be used and the patients should be appropriately monitored.

Ezetimibe

The use of ezetimibe alone is associated with muscle related events, including rhabdomyolysis. The risk of these events may therefore be increased with concomitant use of ezetimibe and atorvastatin. Appropriate clinical monitoring of these patients is recommended.

Colestipol

Plasma concentrations of atorvastatin and its active metabolites were lower (ratio of atorvastatin concentration: 0.74) when colestipol was co-administered with Atorvastatin.

However, lipid effects were greater when Atorvastatin and colestipol were co-administered than when either medicinal product was given alone.

Fusidic acid

The risk of myopathy including rhabdomyolysis may be increased by the concomitant administration of systemic fusidic acid with statins. The mechanism of this interaction (whether it is pharmacodynamic or pharmacokinetic, or both) is yet unknown. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving this combination.

If treatment with systemic fusidic acid is necessary, atorvastatin treatment should be discontinued throughout the duration of the fusidic acid treatment.

Colchicine

Although interaction studies with atorvastatin and colchicine have not been conducted, cases of myopathy have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine.

Effect of atorvastatin on co-administered medicinal products

Digoxin

When multiple doses of digoxin and 10 mg atorvastatin were co-administered, steady-state digoxin concentrations increased slightly. Patients taking digoxin should be monitored appropriately.

Oral contraceptives

Co-administration of Atorvastatin with an oral contraceptive produced increases in plasma concentrations of norethindrone and ethinyl oestradiol.

Warfarin

In a clinical study in patients receiving chronic warfarin therapy, co-administration of atorvastatin 80 mg daily with warfarin caused a small decrease of about 1.7 seconds in prothrombin time during the first 4 days of dosing which returned to normal within 15 days of atorvastatin treatment. Although only very rare cases of clinically significant anticoagulant interactions have been reported, prothrombin time should be determined before starting atorvastatin in patients taking coumarin anticoagulants and frequently enough during early therapy to ensure that no significant alteration of prothrombin time occurs. Once a stable prothrombin time has been documented, prothrombin times can be monitored at the intervals usually recommended for patients on coumarin anticoagulants. If the dose of atorvastatin is changed or discontinued, the same procedure should be repeated. Atorvastatin therapy has not been associated with bleeding or with changes in prothrombin time in patients not taking anticoagulants.

Paediatric population

Drug-drug interaction studies have only been performed in adults. The extent of interactions in the paediatric population is not known. The above mentioned interactions for adults and the warnings in Special warnings and precautions for use should be taken into account for the paediatric population.

Drug interactions

Table 1: Effect of co-administered medicinal products on the pharmacokinetics of atorvastatin

Co-administered medicinal	Atorvastatin				
product and dosing regimen	Dose (mg)	Ratio of AUC ^{&}	Clinical Recommendation [#]		
Glecaprevir 400 mg OD/ Pibrentasvir 120 mg OD, 7 days	10 mg OD for 7 days	8.3	Co-administration with products containing glecaprevir or pibrentasvir is contraindicated.		
Tipranavir 500 mg BID/ Ritonavir 200 mg BID, 8 days (days 14 to 21)		9.4	In cases where co administration with atorvastatin is necessary, do		
Telaprevir 750 mg q8h, 10 days	20 mg, SD	7.9	not exceed 10 mg atorvastatin daily. Clinical monitoring of these patients is recommended.		
Ciclosporin 5.2 mg/kg/day, stable dose	10 mg OD for 28 days	8.7			
Lopinavir 400 mg BID/ Ritonavir 100 mg BID, 14 days		5.9	In cases where co- administration with		
Clarithromycin 500 mg BID, 9 days	80 mg OD for 8 days	4.5	atorvastatin is necessary, lower maintenance doses of atorvastatin are recommended. At atorvastatin dose exceeding 20 mg, clinical monitoring of these patients is recommended.		
Saquinavir 400 mg BID/ Ritonavir (300 mg BID from days 5-7, increased to 400 mg BID on day 8), days 4-18, 30 min after atorvastatin dosing	days	3.9	In cases where condition with attrivation attrivation with attrivation attrivation doses of attrivation are recommended. At attrivation doses		
Darunavir 300 mg BID/ Ritonavir 100 mg BID, 9 days	10 mg OD for 4 days	3.4	exceeding 40 mg, clinical monitoring of these patients is recommended.		
Itraconazole 200 mg OD, 4 days	40 mg SD	3.3			
Fosamprenavir 700 mg BID/ Ritonavir 100 mg BID, 14 days	_	2.5			

Fosamprenavir 1400 mg BID, 14 days	10 mg OD for 4 days	2.3	
Elbasvir 50 mg OD/ Grazoprevir 200 mg OD, 13 days		1.95	The dose of atorvastatin should not exceed a daily dose of 20 mg during co-administration with products containing elbasvir or grazoprevir.
Nelfinavir 1250 mg BID, 14 days	10 mg OD for 28 days	1.74	No specific recommendation.
Grapefruit Juice, 240 mL OD*	40 mg, SD	1.37	Concomitant intake of large quantities of grapefruit juice and atorvastatin is not recommended.
Diltiazem 240 mg OD, 28 days	40 mg, SD	1.51	After initiation or following dose adjustments of diltiazem, appropriate clinical monitoring of these patients is recommended.
Erythromycin 500 mg QID, 7 days	10 mg, SD	1.33	Lower maximum dose and clinical monitoring of these patients is recommended.
Amlodipine 10 mg, single dose	80 mg, SD	1.18	No specific recommendation.
Cimetidine 300 mg QID, 2 weeks	10 mg OD for 2 weeks	1.00	No specific recommendation.
Colestipol 10 g BID, 24 weeks	40 mg OD for 8 weeks	0.74**	No specific recommendation
Antacid suspension of magnesium and aluminium hydroxides, 30 mL QID, 17 days	•	0.66	No specific recommendation.
Efavirenz 600 mg OD, 14 days	10 mg for 3 days	0.59	No specific recommendation.
Rifampin 600 mg OD, 7 days (co-administered)	40 mg SD	1.12	If co-administration cannot be avoided, simultaneous co-administration of atorvastatin
Rifampin 600 mg OD, 5 days (doses separated)	40 mg SD	0.20	with rifampin is recommended, with clinical monitoring.

Gemfibrozil 600 mg BID, 7 days	40 mg SD	1.35	Lower starting dose and clinical monitoring of these patients is recommended.
Fenofibrate 160 mg OD, 7 days	40 mg SD	1.03	Lower starting dose and clinical monitoring of these patients is recommended.
Boceprevir 800 mg TID, 7 days	40 mg SD	2.3	Lower starting dose and clinical monitoring of these patients is recommended. The dose of atorvastatin should not exceed a daily dose of 20 mg during co-administration with boceprevir.

[&]amp; Represents ratio of treatments (co-administered drug plus atorvastatin versus atorvastatin alone).

OD = once daily; SD = single dose; BID = twice daily; TID = three times daily; QID = four times daily.

<u>Table 2: Effect of atorvastatin on the pharmacokinetics of co-administered medicinal products</u>

Atorvastatin and dosing regimen	Co-administered medicinal product			
dosing regimen	Medicinal product/Dose (mg)	Ratio of AUC ^{&}	Clinical Recommendation	
80 mg OD for 10 days	Digoxin 0.25 mg OD, 20 days	1.15	Patients taking digoxin should be monitored appropriately.	
40 mg OD for 22 days	Oral contraceptive OD, 2 months - norethindrone 1 mg - ethinyl estradiol 35 µg	1.28 1.19	No specific recommendation.	

[#] See Special warnings and precautions for use and Interaction with other medicinal products and other forms of interaction for clinical significance.

^{*} Contains one or more components that inhibit CYP3A4 and can increase plasma concentrations of medicinal products metabolised by CYP3A4. Intake of one 240 ml glass of grapefruit juice also resulted in a decreased AUC of 20.4% for the active orthohydroxy metabolite. Large quantities of grapefruit juice (over 1.2 l daily for 5 days) increased AUC of atorvastatin 2.5 fold and AUC of active (atorvastatin and metabolites) HMG-CoA reductase inhibitors 1.3 fold.

^{**} Ratio based on a single sample taken 8-16 h post dose.

80 mg OD for 15 days	* Phenazone, 600 mg SD	1.03	No specific recommendation.
10 mg, SD	Tipranavir 500 mg BID/ritonavir 200 mg BID, 7 days	1.08	No specific recommendation.
10 mg, OD for 4 days	Fosamprenavir 1400 mg BID, 14 days	0.73	No specific recommendation.
10 mg OD for 4 days	Fosamprenavir 700 mg BID/ritonavir 100 mg BID, 14 days	0.99	No specific recommendation.

[&]amp; Represents ratio of treatments (co-administered drug plus atorvastatin versus atorvastatin alone).

OD = once daily; SD = single dose; BID = twice daily.

4.6 Use in Special Populations (Such As Pregnant Women, Lactating Women, Paediatric Patients, Geriatric Patients Etc.)

Clopidogrel

Pregnancy

As no clinical data on exposure to clopidogrel during pregnancy are available, it is preferable not to use clopidogrel during pregnancy as a precautionary measure.

Animal studies do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development.

Breast-feeding

It is unknown whether clopidogrel is excreted in human breast milk. Animal studies have shown excretion of clopidogrel in breast milk. As a precautionary measure, breast-feeding should not be continued during treatment with clopidogrel.

Fertility

Clopidogrel was not shown to alter fertility in animal studies.

Aspirin

Pregnancy

Low doses (up to 100 mg/day):

Clinical studies indicate that doses up to 100 mg/day for restricted obstetrical use, which require specialised monitoring, appear safe.

Doses of 100- 500 mg/day:

There is insufficient clinical experience regarding the use of doses above 100 mg/day up to 500 mg/day. Therefore, the recommendations below for doses of 500 mg/day and above apply also for this dose range.

^{*} Co-administration of multiple doses of atorvastatin and phenazone showed little or no detectable effect in the clearance of phenazone.

Doses of 500 mg/day and above:

Inhibition of prostaglandin synthesis may adversely affect the pregnancy and/or the embryo/foetal development. Data from epidemiological studies suggest an increased risk of miscarriage and of cardiac malformation and gastroschisis after use of a prostaglandin synthesis inhibitor in early pregnancy. The absolute risk for cardiovascular malformation was increased from less than 1%, up to approximately 1.5 %. The risk is believed to increase with dose and duration of therapy. In animals, administration of a prostaglandin synthesis inhibitor has been shown to result in increased pre- and post-implantation loss and embryo-foetal lethality. In addition, increased incidences of various malformations, including cardiovascular, have been reported in animals given a prostaglandin synthesis inhibitor during the organogenetic period. During the first and second trimester of pregnancy, acetylsalicylic acid should not be given unless clearly necessary. If acetylsalicylic acid is used by a woman attempting to conceive, or during the first and second trimester of pregnancy, the dose should be kept as low and duration of treatment as short as possible.

During the third trimester of pregnancy, all prostaglandin synthesis inhibitors may expose the foetus to:

- cardiopulmonary toxicity (with premature closure of the ductus arteriosus and pulmonary hypertension);
- renal dysfunction, which may progress to renal failure with oligo-hydroamniosis; the mother and the neonate, at the end of pregnancy, to:
- possible prolongation of bleeding time, an anti-aggregating effect which may occur even at very low doses.
- inhibition of uterine contractions resulting in delayed or prolonged labour.

Consequently, acetylsalicylic acid at doses of 100 mg/day and higher is contraindicated during the third trimester of pregnancy.

Lactation

As aspirin is excreted in breast milk, Aspirin should not be taken by patients who are breast-feeding, as there is a risk of Reye's syndrome in the infant. High maternal doses may impair platelet function in the infant

Atorvastatin

Women of childbearing potential

Women of child-bearing potential should use appropriate contraceptive measures during treatment.

Pregnancy

Atorvastatin is contraindicated during pregnancy. Safety in pregnant women has not been established. No controlled clinical trials with atorvastatin have been conducted in pregnant women. Rare reports of congenital anomalies following intrauterine exposure to HMG-CoA reductase inhibitors have been received. Studies in animals have shown toxicity to reproduction.

Maternal treatment with atorvastatin may reduce the foetal levels of mevalonate which is a precursor of cholesterol biosynthesis. Atherosclerosis is a chronic process, and ordinarily discontinuation of lipid-lowering medicinal products during pregnancy should have little impact on the long-term risk associated with primary hypercholesterolaemia.

For these reasons, Atorvastatin should not be used in women who are pregnant, trying to become pregnant or suspect they are pregnant. Treatment with Atorvastatin should be suspended for the duration of pregnancy or until it has been determined that the woman is not pregnant.

Breast-feeding

It is unknown whether atorvastatin or its metabolites are excreted in human milk. In rats, plasma concentrations of atorvastatin and its active metabolites are similar to those in milk. Because of the potential for serious adverse reactions, women taking Atorvastatin should not breast-feed their infants. Atorvastatin is contraindicated during breast-feeding.

<u>Fertility</u>

In animal studies atorvastatin had no effect on male or female fertility.

4.7 Effects on Ability to Drive and Use Machines

Clopidogrel Bisulphate with Atorvastatin and Aspirin Capsules

It has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable Effects

Clopidogrel

Summary of the safety profile

Clopidogrel has been evaluated for safety in more than 44,000 patients who have participated in clinical studies, including over 12,000 patients treated for 1 year or more. Overall, clopidogrel 75 mg/day was comparable to ASA 325 mg/day in CAPRIE regardless of age, gender and race. The clinically relevant adverse reactions observed in the CAPRIE, CURE, CLARITY, and COMMIT and ACTIVE-A studies are discussed below. In addition to clinical studies experience, adverse reactions have been spontaneously reported.

Bleeding is the most common reaction reported both in clinical studies as well as in postmarketing experience where it was mostly reported during the first month of treatment.

In CAPRIE, in patients treated with either clopidogrel or ASA, the overall incidence of any bleeding was 9.3%. The incidence of severe cases was similar for clopidogrel and ASA.

In CURE, there was no excess in major bleeds with clopidogrel plus ASA within 7 days after coronary bypass graft surgery in patients who stopped therapy more than five days prior to surgery. In patients who remained on therapy within five days of bypass graft surgery, the event rate was 9.6% for clopidogrel plus ASA, and 6.3% for placebo plus ASA.

In CLARITY, there was an overall increase in bleeding in the clopidogrel plus ASA group vs. the placebo plus ASA group. The incidence of major bleeding was similar between groups. This was consistent across subgroups of patients defined by baseline characteristics, and type of fibrinolytic or heparin therapy.

In COMMIT, the overall rate of noncerebral major bleeding or cerebral bleeding was low and similar in both groups.

In ACTIVE-A, the rate of major bleeding was greater in the clopidogrel + ASA group than in the placebo + ASA group (6.7% versus 4.3%). Major bleeding was mostly of extracranial origin in both groups (5.3% in the clopidogrel + ASA group; 3.5% in the placebo +ASA group), mainly from the gastrointestinal tract (3.5% vs. 1.8%). There was an excess of intracranial bleeding in the clopidogrel + ASA treatment group compared to the placebo + ASA group (1.4% versus 0.8%, respectively). There was no statistically significant difference in the rates

of fatal bleeding (1.1% in the clopidogrel + ASA group and 0.7% in the placebo +ASA group) and haemorrhagic stroke (0.8% and 0.6%, respectively) between groups.

Tabulated list of adverse reactions

Adverse reactions that occurred either during clinical studies or that were spontaneously reported are presented in the table below. Their frequency is defined using the following conventions: common ($\geq 1/100$ to <1/10); uncommon ($\geq 1/1,000$ to <1/100); rare (<1/10,000), not known (cannot be estimated from the available data). Within each system organ class, adverse reactions are presented in order of decreasing seriousness.

System Organ Class	Common	Uncommon	Rare	Very rare, not known*
Blood and the lymphatic system disorders		Thrombocytopenia, leucopenia, eosinophilia	Neutropenia, including severe neutropenia	Thrombotic thrombocytopenic purpura (TTP), aplastic anaemia, pancytopenia, agranulocytosis, severe thrombocytopenia, acquired haemophilia A, granulocytopenia, anaemia
Cardiac disorders				Kounis syndrome (vasospastic allergic angina / allergic myocardial infarction) in the context of a hypersensitivity reaction due to clopidogrel*

Immune system				Serum sickness,
disorders				anaphylactoid
				reactions, cross- reactive drug
				hypersensitivity among
				thienopyridines (such as ticlopidine, prasugrel)*, insulin autoimmune syndrome, which can lead to severe hypoglycemia, particularly in patients with HLA DRA4 subtype (more frequent in the Japanese population)*
Psychiatric disorders				Hallucinations, confusion
Nervous system disorders		Intracranial bleeding (some cases were reported with fatal outcome), headache, paraesthesia, dizziness		Taste disturbances, ageusia
Eye disorders		Eye bleeding (conjunctival, ocular, retinal)		
Ear and labyrinth disorders			Vertigo	
Vascular disorders	Haematoma			Serious haemorrhage, haemorrhage of operative wound,

				vasculitis, hypotension
Respiratory,	Epistaxis			Respiratory tract
thoracic and mediastinal disorders				Bleeding (haemoptysis, pulmonary haemorrhage),
				bronchospasm,
				interstitial
				pneumonitis, eosinophilic pneumonia
Gastrointestinal disorders	Gastrointestinal haemorrhage,	duodenal ulcer,	· •	Gastrointestinal and retroperitoneal
	diarrhoea, abdominal pain, dyspepsia	gastritis, vomiting, nausea, constipation, flatulence		haemorrhage with fatal outcome, pancreatitis, colitis
				(including
				ulcerative or lymphocytic colitis), stomatitis
Hepato-biliary disorders				Acute liver failure, hepatitis, abnormal liver function test
Skin and subcutaneous tissue disorders	Bruising	Rash, pruritus, skin bleeding (purpura)		Bullous dermatitis (toxic epidermal necrolysis, Stevens Johnson Syndrome, erythema multiforme, acute generalised exanthematous
				pustulosis (AGEP)), angioedema, druginduced hypersensitivity syndrome, drug rash with

				eosinophilia and systemic symptoms (DRESS), rash erythematous or exfoliative, urticaria, eczema, lichen planus
Reproductive systems and breast disorders			Gynaecomastia	
Musculoskeletal , connective tissue and bone disorders				Musculo-skeletal bleeding (haemarthrosis), arthritis, arthralgia, myalgia
Renal and urinary disorders		Haematuria		Glomerulonephritis, blood creatinine increased
General disorders and administration site conditions	Bleeding puncture site			Fever
Investigations		Bleeding time prolonged, neutrophil count decreased, platelet count decreased		

^{*} Information related to clopidogrel with frequency "not known".

Aspirin

Side effects are grouped on the basis of System Organ Class. Within each system organ class, the frequencies are defined as: very common ($\geq 1/10$), common ($\geq 1/100$ to < 1/10), uncommon ($\geq 1/1,000$ to < 1/100), rare ($\geq 1/10,000$ to < 1/1,000), very rare (< 1/10,000) and not known (cannot be estimated from the available data).

Blood and lymphatic system	m Common:
disorders	Increased bleeding tendencies.
	Rare:
	Thrombocytopenia, granulocytosis, aplastic anaemia.
	Not known:
	Cases of bleeding with prolonged bleeding time such as epistaxis, haematuria, purpura, ecchymoses, haemoptysis, haematoma, cerebral haemorrhage and gingival bleeding.
	Symptoms may persist for a period of 4–8 days after acetylsalicylic acid discontinuation. As a result, there may be an increased risk of bleeding during surgical procedures.
	Aspirin decreases platelet adhesiveness and, in large doses, may cause hypoprothrombinaemia.
	Existing (haematemesis, melaena) or occult gastrointestinal bleeding, which may lead to iron deficiency anaemia (more common at higher doses).
	Haemolytic anaemia can occur in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency.
Immune system disorders	Rare:
	Hypersensitivity reactions, skin rashes, urticarial, asthma, bronchospasm, angio-oedema, allergic oedema, anaphylactic reactions including shock.
Metabolism and digestiv	e Not known:
system disorders	Hyperuricemia.
Nervous system disorders	Rare:
ivervous system disorders	Intracranial haemorrhage
	Not known:
	Headache, vertigo.
Ear and labyrinth disorders	Not known:
	Reduced hearing ability; tinnitus.
Vascular disorders	Rare:
	Hemorrhagic vasculitis.

Respiratory, thoracic and mediastinal disorders	Uncommon: Rhinitis, dyspnoea. Rare: Bronchospasm, asthma attacks.
Reproductive system and mammary disorders	Rare: Menorrhagia
Gastrointestinal disorders	Common: Dyspepsia. Rare: Severe gastrointestinal haemorrhage, nausea, vomiting. Not known: Gastric or duodenal ulcers and perforation, diarrhoea.
Hepatobiliary disorders	Not known: Hepatic insufficiency
Skin and subcutaneous tissue disorders	Uncommon: Urticaria. Rare: Steven-Johnsons syndrome, Lyells syndrome, purpura, erythema nodosum, erythema multiforme.
Renal and urinary tract disorders	Not known: Impaired renal function, salt and water retention, urate kidney stones.

Atorvastatin

In the atorvastatin placebo-controlled clinical trial database of 16,066 (8755 Atorvastatin vs. 7311 placebo) patients treated for a mean period of 53 weeks, 5.2% of patients on atorvastatin discontinued due to adverse reactions compared to 4.0% of the patients on placebo.

Based on data from clinical studies and extensive post-marketing experience, the following table presents the adverse reaction profile for Atorvastatin.

Estimated frequencies of reactions are ranked according to the following convention: common ($\geq 1/100$, < 1/10); uncommon ($\geq 1/1,000$, < 1/100); rare ($\geq 1/10,000$, < 1/1,000); very rare (< 1/10,000), not known (cannot be estimated from the available data).

<u>Infections</u> and infestations

Common: nasopharyngitis.

Blood and lymphatic system disorders

Rare: thrombocytopenia.

<u>Immune system disorders</u>

Common: allergic reactions.

Very rare: anaphylaxis.

Metabolism and nutrition disorders

Common: hyperglycaemia.

Uncommon: hypoglycaemia, weight gain, anorexia.

Psychiatric disorders

Uncommon: nightmare, insomnia.

Nervous system disorders

Common: headache.

Uncommon: dizziness, paraesthesia, hypoesthesia, dysgeusia, amnesia.

Rare: peripheral neuropathy.

Eye disorders

Uncommon: vision blurred.

Rare: visual disturbance.

Ear and labyrinth disorders

Uncommon: tinnitus.

Very rare: hearing loss.

Respiratory, thoracic and mediastinal disorders

Common: pharyngolaryngeal pain, epistaxis.

Gastrointestinal disorders

Common: constipation, flatulence, dyspepsia, nausea, diarrhoea.

Uncommon: vomiting, abdominal pain upper and lower, eructation, pancreatitis.

Hepatobiliary disorders

Uncommon: hepatitis.

Rare: cholestasis.

Very rare: hepatic failure.

Skin and subcutaneous tissue disorders

Uncommon: urticaria, skin rash, pruritus, alopecia.

Rare: angioneurotic oedema, dermatitis bullous including erythema multiforme, Stevens-

Johnson syndrome and toxic epidermal necrolysis.

Musculoskeletal and connective tissue disorders

Common: myalgia, arthralgia, pain in extremity, muscle spasms, joint swelling, back pain.

Uncommon: neck pain, muscle fatigue.

Rare: myopathy, myositis, rhabdomyolysis, tendonopathy, sometimes complicated by rupture.

Not known: immune-mediated necrotizing myopathy.

Reproductive system and breast disorders

Very rare: gynecomastia.

General disorders and administration site conditions

Uncommon: malaise, asthenia, chest pain, peripheral oedema, fatigue, pyrexia.

Investigations

Common: liver function test abnormal, blood creatine kinase increased.

Uncommon: white blood cells urine positive.

As with other HMG-CoA reductase inhibitors elevated serum transaminases have been reported in patients receiving Atorvastatin. These changes were usually mild, transient, and did not require interruption of treatment. Clinically important (> 3 times upper normal limit) elevations in serum transaminases occurred in 0.8% patients on Atorvastatin. These elevations were dose related and were reversible in all patients.

Elevated serum creatine kinase (CK) levels greater than 3 times upper limit of normal occurred in 2.5% of patients on Atorvastatin, similar to other HMG-CoA reductase inhibitors in clinical trials. Levels above 10 times the normal upper range occurred in 0.4% Atorvastatin -treated patients.

Paediatric population

Paediatric patients aged from 10 to 17 years of age treated with atorvastatin had an adverse experience profile generally similar to that of patients treated with placebo, the most common adverse experiences observed in both groups, regardless of causality assessment, were infections. No clinically significant effect on growth and sexual maturation was observed in a 3-year study based on the assessment of overall maturation and development, assessment of Tanner Stage, and measurement of height and weight. The safety and tolerability profile in paediatric patients was similar to the known safety profile of atorvastatin in adult patients.

The clinical safety database includes safety data for 520 paediatric patients who received atorvastatin, among which 7 patients were < 6 years old, 121 patients were in the age range of 6 to 9, and 392 patients were in the age range of 10 to 17. Based on the data available, the frequency, type and severity of adverse reactions in children is similar to adults.

The following adverse events have been reported with some statins:

- Sexual dysfunction.
- Depression.
- Exceptional cases of interstitial lung disease, especially with long term therapy.
- Diabetes Mellitus: Frequency will depend on the presence or absence of risk factors (fasting blood glucose ≥ 5.6 mmol/L, BMI>30kg/m², raised triglycerides, history of hypertension).

4.9 Overdose

Clopidogrel

Overdose following clopidogrel administration may lead to prolonged bleeding time and subsequent bleeding complications. Appropriate therapy should be considered if bleedings are observed.

No antidote to the pharmacological activity of clopidogrel has been found. If prompt correction of prolonged bleeding time is required, platelet transfusion may reverse the effects of clopidogrel.

Aspirin

Salicylate poisoning is usually associated with plasma concentrations >350 mg/L (2.5 mmol/L). Most adult deaths occur in patients whose concentrations exceed 700 mg/L (5.1 mmol/L). Single doses less than 100 mg/kg are unlikely to cause serious poisoning.

Symptoms

Common features include vomiting, dehydration, tinnitus, vertigo, deafness, sweating, warm extremities with bounding pulses, increased respiratory rate and hyperventilation.

Some degree of acid-base disturbance is present in most cases.

A mixed respiratory alkalosis and metabolic acidosis with normal or high arterial pH (normal or reduced hydrogen ion concentration) is usual in adults or children over the age of four years. In children aged four years or less, a dominant metabolic acidosis with low arterial pH (raised hydrogen ion concentration) is common. Acidosis may increase salicylate transfer across the blood brain barrier.

Uncommon features include haematemesis, hyperpyrexia, hypoglycaemia, hypokalaemia, thrombocytopenia, increased INR/PTR, intravascular coagulation, renal failure and non-cardiac pulmonary oedema.

Central nervous system features including confusion, disorientation, coma and convulsions are less common in adults than in children.

Treatment

Give activated charcoal if an adult present within one hour of ingestion of more than 250 mg/kg. The plasma salicylate concentration should be measured, although the severity of poisoning cannot be determined from this alone and the clinical and biochemical features must be taken into account. Elimination is increased by urinary alkalinisation, which is achieved by the administration of 1.26% sodium bicarbonate.

The urine pH should be monitored. Correct metabolic acidosis with intravenous 8.4% sodium bicarbonate (first check serum potassium). Forced diuresis should not be used since it does not enhance salicylate excretion and may cause pulmonary oedema

Haemodialysis is the treatment of choice for severe poisoning and should be considered in patients with plasma salicylate concentrations >700 mg/L (5.1 mmol/L) or lower concentrations associated with severe clinical or metabolic features. Patients under ten years or over 70 have increased risk of salicylate toxicity and may require dialysis at an earlier stage.

Atorvastatin

Specific treatment is not available for Atorvastatin overdose. Should an overdose occur, the patient should be treated symptomatically and supportive measures instituted, as required. Liver function tests should be performed and serum CK levels should be monitored. Due to extensive atorvastatin binding to plasma proteins, haemodialysis is not expected to significantly enhance atorvastatin clearance.

5. PHARMACOLOGICAL PROPERTIES

5.1 Mechanism of Action

Clopidogrel

Clopidogrel is a prodrug, one of whose metabolites is an inhibitor of platelet aggregation. Clopidogrel must be metabolised by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Due to the irreversible binding, platelets exposed are affected for the remainder of their lifespan (approximately 7-10 days) and recovery of normal platelet function occurs at a rate consistent with platelet turnover. Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Because the active metabolite is formed by CYP450 enzymes, some of which are polymorphic or subject to inhibition by other medicinal products, not all patients will have adequate platelet inhibition.

Aspirin

Aspirin (acetylsalicylic acid) irreversibly acetylates platelet cyclo-oxygenase thereby inhibiting the biosynthesis of thromboxane, a potent vasoconstrictor and inducer of platelet aggregation. It also inhibits the action of cyclo-oxygenase in the vascular endothelial wall preventing the synthesis of prostacyclin, a potent vasodilator and inhibitor of platelet aggregation.

Atorvastatin

Atorvastatin is a selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A to mevalonate, a precursor of sterols, including cholesterol. Triglycerides and cholesterol in the liver are incorporated into very low-density lipoproteins (VLDL) and released into the plasma for delivery to peripheral tissues. Low-density lipoprotein (LDL) is formed from VLDL and is catabolised primarily through the receptor with high affinity to LDL (LDL receptor).

Atorvastatin lowers plasma cholesterol and lipoprotein serum concentrations by inhibiting HMG-CoA reductase and subsequently cholesterol biosynthesis in the liver and increases the number of hepatic LDL receptors on the cell surface for enhanced uptake and catabolism of LDL.

Atorvastatin reduces LDL production and the number of LDL particles. Atorvastatin produces a profound and sustained increase in LDL receptor activity coupled with a beneficial change in the quality of circulating LDL particles. Atorvastatin is effective in reducing LDL-C in patients with homozygous familial hypercholesterolaemia, a population that has not usually responded to lipid-lowering medicinal products.

5.2 Pharmacodynamic Properties

Clopidogrel

Pharmacodynamic properties

Pharmacotherapeutic group: platelet aggregation inhibitors excl. heparin, ATC Code: B01AC04.

Pharmacodynamic effects

Repeated doses of 75 mg per day produced substantial inhibition of ADP-induced platelet aggregation from the first day; this increased progressively and reached steady state between Day 3 and Day 7. At steady state, the average inhibition level observed with a dose of 75 mg per day was between 40% and 60%. Platelet aggregation and bleeding time gradually returned to baseline values, generally within 5 days after treatment was discontinued.

Clinical efficacy and safety

The safety and efficacy of clopidogrel have been evaluated in 5 double-blind studies involving over 88,000 patients: the CAPRIE study, a comparison of clopidogrel to ASA, and the CURE, CLARITY, COMMIT and ACTIVE-A studies comparing clopidogrel to placebo, both medicinal products given in combination with ASA and other standard therapy.

Recent myocardial infarction (MI), recent stroke or established peripheral arterial disease

The CAPRIE study included 19,185 patients with atherothrombosis as manifested by recent myocardial infarction (<35 days), recent ischaemic stroke (between 7 days and 6 months) or established peripheral arterial disease (PAD). Patients were randomised to clopidogrel 75 mg/day or ASA 325 mg/day, and were followed for 1 to 3 years. In the myocardial infarction subgroup, most of the patients received ASA for the first few days following the acute myocardial infarction.

Clopidogrel significantly reduced the incidence of new ischaemic events (combined end point of myocardial infarction, ischaemic stroke and vascular death) when compared to ASA. In the intention to treat analysis, 939 events were observed in the clopidogrel group and 1,020 events with ASA (relative risk reduction (RRR) 8.7%, [95% CI: 0.2 to 16.4]; p=0.045), which corresponds, for every 1,000 patients treated for 2 years, to 10 [CI: 0 to 20] additional patients being prevented from experiencing a new ischaemic event. Analysis of total mortality as a secondary endpoint did not show any significant difference between clopidogrel (5.8%) and ASA (6.0%).

In a subgroup analysis by qualifying condition (myocardial infarction, ischaemic stroke, and PAD) the benefit appeared to be strongest (achieving statistical significance at p=0.003) in patients enrolled due to PAD (especially those who also had a history of myocardial infarction) (RRR = 23.7%; CI: 8.9 to 36.2) and weaker (not significantly different from ASA) in stroke patients (RRR = 7.3%; CI: -5.7 to 18.7 [p=0.258]). In patients who were enrolled in the trial on the sole basis of a recent myocardial infarction, clopidogrel was numerically inferior, but not statistically different from ASA (RRR = -4.0%; CI: -22.5 to 11.7 [p=0.639]). In addition, a subgroup analysis by age suggested that the benefit of clopidogrel in patients over 75 years was less than that observed in patients \leq 75 years.

Since the CAPRIE trial was not powered to evaluate efficacy of individual subgroups, it is not clear whether the differences in relative risk reduction across qualifying conditions are real, or a result of chance.

Acute coronary syndrome

The CURE study included 12,562 patients with non-ST segment elevation acute coronary syndrome (unstable angina or non-Q-wave myocardial infarction), and presenting within 24 hours of onset of the most recent episode of chest pain or symptoms consistent with ischaemia. Patients were required to have either ECG changes compatible with new ischaemia or elevated cardiac enzymes or troponin I or T to at least twice the upper limit of normal. Patients were randomised to clopidogrel (300 mg loading dose followed by 75 mg/day, N=6,259) or placebo (N=6,303), both given in combination with ASA (75-325 mg once daily) and other standard therapies. Patients were treated for up to one year. In CURE, 823 (6.6%) patients received concomitant GPIIb/IIIa receptor antagonist therapy. Heparins were administered in more than 90% of the patients and the relative rate of bleeding between clopidogrel and placebo was not significantly affected by the concomitant heparin therapy.

The number of patients experiencing the primary endpoint [cardiovascular (CV) death, myocardial infarction (MI), or stroke] was 582 (9.3%) in the clopidogrel-treated group and 719 (11.4%) in the placebo-treated group, a 20% relative risk reduction (95% CI of 10%-28%; p=0.00009) for the clopidogrel-treated group (17% relative risk reduction when patients were treated conservatively, 29% when they underwent percutaneous transluminal coronary angioplasty (PTCA) with or without stent and 10% when they underwent coronary artery bypass graft (CABG)). New cardiovascular events (primary endpoint) were prevented, with relative risk reductions of 22% (CI: 8.6, 33.4), 32% (CI: 12.8, 46.4), 4% (CI: -26.9, 26.7), 6% (CI: -33.5, 34.3) and 14% (CI: -31.6, 44.2), during the 0-1, 1-3, 3-6, 6-9 and 9-12-month study intervals, respectively. Thus, beyond 3 months of treatment, the benefit observed in the clopidogrel + ASA group was not further increased, whereas the risk of haemorrhage persisted.

The use of clopidogrel in CURE was associated with a decrease in the need of thrombolytic therapy (RRR = 43.3%; CI: 24.3%, 57.5%) and GPIIb/IIIa inhibitors (RRR = 18.2%; CI: 6.5%, 28.3%).

The number of patients experiencing the co-primary endpoint (CV death, MI, stroke or refractory ischaemia) was 1,035 (16.5%) in the clopidogrel-treated group and 1,187 (18.8%) in the placebo-treated group, a 14% relative risk reduction (95% CI of 6%-21%, p=0.0005) for the clopidogrel-treated group. This benefit was mostly driven by the statistically significant reduction in the incidence of MI [287 (4.6%) in the clopidogrel treated group and 363 (5.8%) in the placebo treated group]. There was no observed effect on the rate of rehospitalisation for unstable angina.

The results obtained in populations with different characteristics (e.g. unstable angina or nonQ-wave MI, low to high risk levels, diabetes, need for revascularisation, age, gender, etc.) were consistent with the results of the primary analysis. In particular, in a post-hoc analysis in 2,172 patients (17% of the total CURE population) who underwent stent placement (Stent-CURE), the data showed that clopidogrel compared to placebo, demonstrated a significant RRR of 26.2% favouring clopidogrel for the co-primary endpoint (CV death, MI, stroke) and also a significant RRR of 23.9% for the second co-primary endpoint (CV death, MI, stroke or refractory ischaemia). Moreover, the safety profile of clopidogrel in this subgroup of patients did not raise any particular concern. Thus, the results from this subset are in line with the overall trial results.

The benefits observed with clopidogrel were independent of other acute and long-term cardiovascular therapies (such as heparin/LMWH, GPIIb/IIIa antagonists, lipid lowering medicinal products, beta blockers, and ACE-inhibitors). The efficacy of clopidogrel was observed independently of the dose of ASA (75-325 mg once daily).

In patients with acute ST-segment elevation MI, safety and efficacy of clopidogrel have been evaluated in 2 randomised, placebo-controlled, double-blind studies, CLARITY and COMMIT.

The CLARITY trial included 3,491 patients presenting within 12 hours of the onset of a ST elevation MI and planned for thrombolytic therapy. Patients received clopidogrel (300 mg loading dose, followed by 75 mg/day, n=1,752) or placebo (n=1,739), both in combination with ASA (150 to 325 mg as a loading dose, followed by 75 to 162 mg/day), a fibrinolytic agent and, when appropriate, heparin. The patients were followed for 30 days. The primary endpoint was the occurrence of the composite of an occluded infarct-related artery on the predischarge angiogram, or death or recurrent MI before coronary angiography. For patients who did not undergo angiography, the primary endpoint was death or recurrent myocardial infarction by Day 8 or by hospital discharge. The patient population included 19.7% women and 29.2% patients \geq 65 years. A total of 99.7% of patients received fibrinolytics (fibrin specific: 68.7%, non-fibrin specific: 31.1%), 89.5% heparin, 78.7% beta blockers, 54.7% ACE inhibitors and 63% statins.

Fifteen percent (15.0%) of patients in the clopidogrel group and 21.7% in the placebo group reached the primary endpoint, representing an absolute reduction of 6.7% and a 36 % odds reduction in favour of clopidogrel (95% CI: 24, 47%; p < 0.001), mainly related to a reduction in occluded infarct-related arteries. This benefit was consistent across all prespecified subgroups including patients' age and gender, infarct location, and type of fibrinolytic or heparin used.

The 2x2 factorial design COMMIT trial included 45,852 patients presenting within 24 hours of the onset of the symptoms of suspected MI with supporting ECG abnormalities (i.e. ST elevation, ST depression or left bundle-branch block). Patients received clopidogrel (75 mg/day, n=22,961) or placebo (n=22,891), in combination with ASA (162 mg/day), for 28 days or until hospital discharge. The co-primary endpoints were death from any cause and the first occurrence of re-infarction, stroke or death. The population included 27.8% women, 58.4% patients \geq 60 years (26% \geq 70 years) and 54.5% patients who received fibrinolytics.

Clopidogrel significantly reduced the relative risk of death from any cause by 7% (p=0.029), and the relative risk of the combination of re-infarction, stroke or death by 9% (p=0.002), representing an absolute reduction of 0.5% and 0.9%, respectively. This benefit was consistent across age, gender and with or without fibrinolytics, and was observed as early as 24 hours.

De-escalation of P2Y12 Inhibitor Agents in ACS

Switching from a more potent P2Y12 receptor inhibitor to clopidogrel in association with aspirin after acute phase in ACS has been evaluated in two randomized investigator-sponsored studies (ISS) – TOPIC and TROPICAL–ACS – with clinical outcome data.

The clinical benefit provided by the more potent P2Y12 inhibitors, ticagrelor and prasugrel, in their pivotal studies is related to a significant reduction in recurrent ischaemic events (including acute and subacute stent thrombosis (ST), myocardial infarction (MI), and urgent revascularization). Although the ischaemic benefit was consistent throughout the first year, greater reduction in ischaemic recurrence after ACS was observed during the initial days following the treatment initiation. In contrast, post-hocanalyses demonstrated statistically significant increases in the bleeding risk with the more potent P2Y12 inhibitors, occurring predominantly during the maintenance phase, after the first month post-ACS. TOPIC and TROPICAL-ACS were designed to study how to mitigate the bleeding events while maintaining efficacy.

TOPIC (*Timing of Platelet Inhibition after acute Coronary syndrome*)

This randomized, open-label trial included ACS patients requiring PCI. Patients on aspirin and a more potent P2Y12 blocker and without adverse event at one month were assigned to switch to fixed-dose aspirin plus clopidogrel (de-escalated dual antiplatelet therapy (DAPT)) or continuation of their drug regimen (unchanged DAPT).

Overall, 645 of 646 patients with STEMI or NSTEMI or unstable angina were analysed (deescalated DAPT (n=322); unchanged DAPT (n=323)). Follow-up at one year was performed for 316 patients (98.1%) in the de-escalated DAPT group and 318 patients (98.5%) in the unchanged DAPT group. The median follow-up for both groups was 359 days. The characteristics of the studied cohort were similar in the 2 groups.

The primary outcome, a composite of cardiovascular death, stroke, urgent revascularization, and BARC (Bleeding Academic Research Consortium) bleeding ≥ 2 at 1-year post ACS, occurred in 43 patients (13.4%) in the de-escalated DAPT group and in 85 patients (26.3%) in the unchanged DAPT group (p<0.01). This statistically significant difference was mainly driven by fewer bleeding events, with no difference reported in ischaemic endpoints (p=0.36), while BARC ≥ 2 bleeding occurred less frequently in the de-escalated DAPT group (4.0%) versus 14.9% in the unchanged DAPT group (p<0.01). Bleeding events defined as all BARC occurred in 30 patients (9.3%) in the de-escalated DAPT group and in 76 patients (23.5%) in the unchanged DAPT group (p<0.01)

TROPICAL-ACS (Testing Responsiveness to Platelet Inhibition on Chronic Antiplatelet Treatment for Acute Coronary Syndromes)

This randomized, open-label trial included 2,610 biomarker-positive ACS patients after successful PCI. Patients were randomized to receive either prasugrel 5 or 10 mg/d (Days 0-14) (n=1309), or prasugrel 5 or 10 mg/d (Days 0-7) then de-escalated to clopidogrel 75 mg/d (Days 8-14) (n=1309), in combination with ASA (<100 mg/day). At Day 14, platelet function testing (PFT) was performed. The prasugrel-only patients were continued on prasugrel for 11.5 months.

The de-escalated patients underwent high platelet reactivity (HPR) testing. If HPR≥46 units, the patients were escalated back to prasugrel 5 or 10 mg/d for 11.5 months; if HPR<46 units, the patients continued on clopidogrel 75 mg/d for 11.5 months. Therefore, the guided deescalation arm had patients on either prasugrel (40%) or clopidogrel (60%). All patients were continued on aspirin and were followed for one year.

The primary endpoint (the combined incidence of CV death, MI, stroke and BARC bleeding grade ≥ 2 at 12 months) was met showing non-inferiority. Ninety-five patients (7%) in the guided de-escalation group and 118 patients (9%) in the control group (p non-inferiority=0.0004) had an event. The guided de-escalation did not result in an increased combined risk of ischemic events (2.5% in the de-escalation group vs 3.2% in the control group; p non-inferiority=0.0115), nor in the key secondary endpoint of BARC bleeding ≥ 2 ((5%) in the de-escalation group versus 6% in the control group (p=0.23)). The cumulative incidence of all bleeding events (BARC class 1 to 5) was 9% (114 events) in the guided de-escalation group versus 11% (137 events) in the control group (p=0.14)

Atrial fibrillation

The ACTIVE-W and ACTIVE-A studies, separate trials in the ACTIVE program, included patients with atrial fibrillation (AF) who had at least one risk factor for vascular events. Based on enrolment criteria, physicians enrolled patients in ACTIVE-W if they were candidates for vitamin K antagonist (VKA) therapy (such as warfarin). The ACTIVE-A study included patients who could not receive VKA therapy because they were unable or unwilling to receive

the treatment.

The ACTIVE-W study demonstrated that anticoagulant treatment with vitamin K antagonists was more effective than with clopidogrel and ASA.

The ACTIVE-A study (N=7,554) was a multicenter, randomized, double-blind, placebo controlled study which compared clopidogrel 75 mg/day + ASA (N=3,772) to placebo + ASA (N=3,782). The recommended dose for ASA was 75 to 100 mg/day. Patients were treated for up to 5 years.

Patients randomized in the ACTIVE program were those presenting with documented AF, i.e., either permanent AF or at least 2 episodes of intermittent AF in the past 6 months, and had at least one of the following risk factors: age ≥75 years or age 55 to 74 years and either diabetes mellitus requiring drug therapy, or documented previous MI or documented coronary artery disease; treated for systemic hypertension; prior stroke, transient ischaemic attack (TIA), or non-CNS systemic embolus; left ventricular dysfunction with left ventricular ejection fraction <45%; or documented peripheral vascular disease. The mean CHADS2 score was 2.0 (range 0-6).

The major exclusion criteria for patients were documented peptic ulcer disease within the previous 6 months; prior intracerebral hemorrhage; significant thrombocytopenia (platelet count < 50 x 109/l); requirement for clopidogrel or oral anticoagulants (OAC); or intolerance to any of the two compounds.

Seventy-three percent (73%) of patients enrolled into the ACTIVE-A study were unable to take VKA due to physician assessment, inability to comply with INR (international normalised ratio) monitoring, predisposition to falling or head trauma, or specific risk of bleeding; for 26% of the patients, the physician's decision was based on the patient's unwillingness to take VKA. The patient population included 41.8 % women. The mean age was 71 years, 41.6% of patients were \geq 75 years. A total of 23.0% of patients received anti-arrhythmics, 52.1% beta-blockers, 54.6% ACE inhibitors, and 25.4% statins.

The number of patients who reached the primary endpoint (time to first occurrence of stroke, MI, non-CNS systemic embolism or vascular death) was 832 (22.1%) in the group treated with clopidogrel + ASA and 924 (24.4%) in the placebo + ASA group (relative risk reduction of 11.1%; 95% CI of 2.4% to 19.1%; p=0.013), primarily due to a large reduction in the incidence of strokes. Strokes occurred in 296 (7.8%) patients receiving clopidogrel + ASA and 408 (10.8%) patients receiving placebo + ASA (relative risk reduction, 28.4%; 95% CI, 16.8% to 38.3%; p=0.00001).

Paediatric population

In a dose escalation study of 86 neonates or infants up to 24 months of age at risk for thrombosis (PICOLO), clopidogrel was evaluated at consecutive doses of 0.01, 0.1 and 0.2 mg/kg in neonates and infants and 0.15 mg/kg only in neonates. The dose of 0.2 mg/kg achieved the mean percent inhibition of 49.3% (5 μ M ADP-induced platelet aggregation) which was comparable to that of adults taking Clopidogrel 75 mg/day.

In a randomised, double-blind, parallel-group study (CLARINET), 906 paediatric patients (neonates and infants) with cyanotic congenital heart disease palliated with a systemic-to pulmonary arterial shunt were randomised to receive clopidogrel 0.2 mg/kg (n=467) or placebo (n=439) along with concomitant background therapy up to the time of second stage surgery. The mean time between shunt palliation and first administration of study medicinal product was 20 days. Approximately 88% of patients received concomitant ASA (range of 1 to 23 mg/kg/day). There was no significant difference between groups in the primary composite

endpoint of death, shunt thrombosis or cardiac-related intervention prior to 120 days of age following an event considered of thrombotic nature (89 [19.1%] for the clopidogrel group and 90 [20.5%] for the placebo group). Bleeding was the most frequently reported adverse reaction in both clopidogrel and placebo groups; however, there was no significant difference in the bleeding rate between groups. In the long-term safety follow-up of this study, 26 patients with the shunt still in place at one year of age received clopidogrel up to 18 months of age. No new safety concerns were noted during this long-term follow-up.

The CLARINET and the PICOLO trials were conducted using a constituted solution of clopidogrel. In a relative bioavailability study in adults, the constituted solution of clopidogrel showed a similar extent and slightly higher rate of absorption of the main circulating (inactive) metabolite compared to the authorised capsule.

Aspirin

Pharmacotherapeutic group: Platelet Aggregation Inhibitor Excl. Heparin, ATC code: B01AC06

The antiplatelet effect of aspirin is largely unrelated to its systemic bioavailability and its duration of effect does not correlate with the presence of intact salicylic acid in the circulation. The antiplatelet effect is considered to be largely pre-systemic, associated with acetylation of platelet cyclo-oxygenase in the portal circulation.

However, as the endothelial cell is capable of synthesising new cyclo-oxygenase, whereas the platelet is not, the effect on thromboxane is longer lasting.

Due to the low dose enteric-coated formulation of Aspirin 75mg Gastro-Resistant Capsule acetylsalicylic acid is slowly released into the portal circulation and is deacetylated by the liver to inactive salicylate before reaching the systemic circulation. It is postulated that platelets passing through the portal circulation are exposed to acetylsalicylic acid concentrations sufficient to achieve effective thromboxane inhibition, while systemic prostacyclin synthesis remains essentially unaffected.

Experimental data suggest that ibuprofen may inhibit the effect of low dose aspirin on platelet aggregation when they are dosed concomitantly. In one study, when a single dose of ibuprofen 400mg was taken within 8 hours before or within 30 minutes after immediate release aspirin dosing (81mg), a decreased effect of aspirin on the formation of thromboxane or platelet aggregation occurred. However, the limitations of these data and the uncertainties regarding extrapolation of ex-vivo data to the clinical situation imply that no firm conclusions can be made for regular ibuprofen use, and no clinically relevant effect is considered to be likely for occasional ibuprofen use.

Atorvastatin

Pharmacotherapeutic group: Lipid modifying agents, HMG-CoA-reductase inhibitors, ATC code: C10AA05

Atorvastatin has been shown to reduce concentrations of Total-C (30% - 46%), LDL-C (41% - 61%), apolipoprotein B (34% - 50%), and triglycerides (14% - 33%) while producing variable increases in HDL-C and apolipoprotein A1 in a dose response study. These results are consistent in patients with heterozygous familial hypercholesterolaemia, nonfamilial forms of hypercholesterolaemia, and mixed hyperlipidaemia, including patients with noninsulindependent diabetes mellitus.

Reductions in Total-C, LDL-C, and apolipoprotein B have been proven to reduce risk for cardiovascular events and cardiovascular mortality.

Homozygous familial hypercholesterolaemia

In a multicentre 8 week open-label compassionate-use study with an optional extension phase of variable length, 335 patients were enrolled, 89 of which were identified as homozygous familial hypercholesterolaemia patients. From these 89 patients, the mean percent reduction in LDL-C was approximately 20%. Atorvastatin was administered at doses up to 80 mg/day.

Atherosclerosis

In the Reversing Atherosclerosis with Aggressive Lipid- Lowering Study (REVERSAL), the effect of intensive lipid lowering with atorvastatin 80 mg and standard degree of lipid lowering with pravastatin 40 mg on coronary atherosclerosis was assessed by intravascular ultrasound (IVUS), during angiography, in patients with coronary heart disease. In this randomised, double- blind, multicentre, controlled clinical trial, IVUS was performed at baseline and at 18 months in 502 patients. In the atorvastatin group (n=253), there was no progression of atherosclerosis.

The median percent change, from baseline, in total atheroma volume (the primary study criteria) was -0.4% (p=0.98) in the atorvastatin group and +2.7% (p=0.001) in the pravastatin group (n=249). When compared to pravastatin the effects of atorvastatin were statistically significant (p=0.02). The effect of intensive lipid lowering on cardiovascular endpoints (e. g. need for revascularisation, non-fatal myocardial infarction, coronary death) was not investigated in this study.

In the atorvastatin group, LDL-C was reduced to a mean of 2.04 mmol/L \pm 0.8 (78.9 mg/dl \pm 30) from baseline 3.89 mmol/L \pm 0.7 (150 mg/dl \pm 28) and in the pravastatin group, LDL-C was reduced to a mean of 2.85 mmol/L \pm 0.7 (110 mg/dl \pm 26) from baseline 3.89 mmol/L \pm 0.7 (150 mg/dl \pm 26) (p<0.0001). Atorvastatin also significantly reduced mean TC by 34.1% (pravastatin: -18.4%, p<0.0001), mean TG levels by 20% (pravastatin: -6.8%, p<0.0009), and mean apolipoprotein B by 39.1% (pravastatin: -22.0%, p<0.0001). Atorvastatin increased mean HDL-C by 2.9% (pravastatin: +5.6%, p=NS). There was a 36.4% mean reduction in CRP in the atorvastatin group compared to a 5.2% reduction in the pravastatin group (p<0.0001).

Study results were obtained with the 80 mg dose strength. Therefore, they cannot be extrapolated to the lower dose strengths.

The safety and tolerability profiles of the two treatment groups were comparable.

The effect of intensive lipid lowering on major cardiovascular endpoints was not investigated in this study. Therefore, the clinical significance of these imaging results with regard to the primary and secondary prevention of cardiovascular events is unknown.

Acute coronary syndrome

In the MIRACL study, atorvastatin 80 mg has been evaluated in 3,086 patients (atorvastatin n=1,538; placebo n=1,548) with an acute coronary syndrome (non Q-wave MI or unstable angina). Treatment was initiated during the acute phase after hospital admission and lasted for a period of 16 weeks. Treatment with atorvastatin 80 mg/day increased the time to occurrence of the combined primary endpoint, defined as death from any cause, nonfatal MI, resuscitated cardiac arrest, or angina pectoris with evidence of myocardial ischaemia requiring hospitalization, indicating a risk reduction by 16% (p=0.048). This was mainly due to a 26% reduction in re-hospitalisation for angina pectoris with evidence of myocardial ischaemia (p=0.018). The other secondary endpoints did not reach statistical significance on their own

(overall: Placebo: 22.2%, Atorvastatin: 22.4%).

The safety profile of atorvastatin in the MIRACL study was consistent with what is described in Undesirable effects.

Prevention of cardiovascular disease

The effect of atorvastatin on fatal and non-fatal coronary heart disease was assessed in a randomised, double-blind, placebo-controlled study, the Anglo-Scandinavian Cardiac Outcomes Trial Lipid Lowering Arm (ASCOT-LLA). Patients were hypertensive, 40-79 years of age, with no previous myocardial infarction or treatment for angina, and with TC levels ≤6.5 mmol/L (251 mg/dl). All patients had at least 3 of the pre-defined cardiovascular risk factors: male gender, age ≥55 years, smoking, diabetes, history of CHD in a first-degree relative, TC: HDL-C >6, peripheral vascular disease, left ventricular hypertrophy, prior cerebrovascular event, specific ECG abnormality, proteinuria/albuminuria. Not all included patients were estimated to have a high risk for a first cardiovascular event.

Patients were treated with anti-hypertensive therapy (either amlodipine or atenolol-based regimen) and either atorvastatin 10 mg daily (n=5,168) or placebo (n=5,137).

The absolute and relative risk reduction effect of atorvastatin was as follows:

Event	Relative Risk Reduction (%)	No. of Events (Atorvastatin vs Placebo)		
Fatal CHD plus non-fatal MI	36%	100 vs. 154	1.1%	0.0005
Total cardiovascular events and	20%	389 vs. 483	1.9%	0.0008
revascularization procedures	29%	178 vs 247	1.4%	0.0006
Total coronary events				

¹Based on difference in crude events rates occurring over a median follow-up of 3.3 years.

CHD = coronary heart disease; MI = myocardial infarction.

Total mortality and cardiovascular mortality were not significantly reduced (185 vs. 212 events, p=0.17 and 74 vs. 82 events, p=0.51). In the subgroup analyses by gender (81% males, 19% females), a beneficial effect of atorvastatin was seen in males but could not be established in females possibly due to the low event rate in the female subgroup. Overall and cardiovascular mortality were numerically higher in the female patients (38 vs. 30 and 17 vs. 12), but this was not statistically significant. There was significant treatment interaction by antihypertensive baseline therapy. The primary endpoint (fatal CHD plus non-fatal MI) was significantly reduced by atorvastatin in patients treated with amlodipine (HR 0.47 (0.32-0.69), p=0.00008), but not in those treated with atenolol (HR 0.83 (0.59-1.17), p=0.287).

The effect of atorvastatin on fatal and non-fatal cardiovascular disease was also assessed in a randomised, double-blind, multicentre, placebo-controlled trial, the Collaborative Atorvastatin Diabetes Study (CARDS) in patients with type 2 diabetes, 40-75 years of age, without prior history of cardiovascular disease, and with LDL-C \leq 4.14 mmol/L (160 mg/dl) and TG \leq 6.78 mmol/L (600 mg/dl). All patients had at least 1 of the following risk factors: hypertension, current smoking, retinopathy, microalbuminuria or macro albuminuria.

Patients were treated with either atorvastatin 10 mg daily (n=1,428) or placebo (n=1,410) for a median follow-up of 3.9 years.

The absolute and relative risk reduction effect of atorvastatin was as follows:

Event	Relative Risk Reduction (%)	No. of Events (Atorvastatin vs Placebo)		*
Major cardiovascular events (fatal and non-fatal AMI, silent MI, acute CHD death, unstable angina, CABG, PTCA, revascularization, stroke) MI (fatal and non-fatal AMI, silent MI)	42% 48%	83 vs. 127 38 vs 64 21 vs. 39	1.9%	0.0010 0.0070 0.0163
Strokes (Fatal and non-fatal)				

¹Based on difference in crude events rates occurring over a median follow-up of 3.9 years.

AMI = acute myocardial infarction; CABG = coronary artery bypass graft; CHD = coronary heart disease; MI = myocardial infarction; PTCA = percutaneous transluminal coronary angioplasty.

There was no evidence of a difference in the treatment effect by patient's gender, age, or baseline LDL-C level. A favourable trend was observed regarding the mortality rate (82 deaths in the placebo group vs. 61 deaths in the atorvastatin group, p=0.0592).

Recurrent stroke

In the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study, the effect of atorvastatin 80 mg daily or placebo on stroke was evaluated in 4731 patients who had a stroke or transient ischemic attack (TIA) within the preceding 6 months and no history of coronary heart disease (CHD). Patients were 60% male, 21-92 years of age (average age 63 years), and had an average baseline LDL of 133 mg/dL (3.4 mmol/L). The mean LDL-C was 73 mg/dL (1.9 mmol/L) during treatment with atorvastatin and 129 mg/dL (3.3 mmol/L) during treatment with placebo. Median follow-up was 4.9 years.

Atorvastatin 80 mg reduced the risk of the primary endpoint of fatal or non-fatal stroke by 15% (HR 0.85; 95% CI, 0.72-1.00; p=0.05 or 0.84; 95% CI, 0.71-0.99; p=0.03 after adjustment for baseline factors) compared to placebo. All-cause mortality was 9.1% (216/2365) for atorvastatin versus 8.9% (211/2366) for placebo.

In a post-hoc analysis, atorvastatin 80 mg reduced the incidence of ischemic stroke (218/2365, 9.2% vs. 274/2366, 11.6%, p=0.01) and increased the incidence of haemorrhagic stroke (55/2365, 2.3% vs. 33/2366, 1.4%, p=0.02) compared to placebo.

• The risk of haemorrhagic stroke was increased in patients who entered the study with prior haemorrhagic stroke (7/45 for atorvastatin versus 2/48 for placebo; HR 4.06; 95% CI, 0.84-19.57), and the risk of ischemic stroke was similar between groups (3/45 for atorvastatin versus 2/48 for placebo; HR 1.64; 95% CI, 0.27-9.82).

• The risk of haemorrhagic stroke was increased in patients who entered the study with prior lacunar infarct (20/708 for atorvastatin versus 4/701 for placebo; HR 4.99; 95% CI, 1.71-14.61), but the risk of ischemic stroke was also decreased in these patients (79/708 for atorvastatin versus 102/701 for placebo; HR 0.76; 95% CI, 0.57-1.02). It is possible that the net risk of stroke is increased in patients with prior lacunar infarct who receive atorvastatin 80 mg/day.

All-cause mortality was 15.6% (7/45) for atorvastatin versus 10.4% (5/48) in the subgroup of patients with prior haemorrhagic stroke. All-cause mortality was 10.9% (77/708) for atorvastatin versus 9.1% (64/701) for placebo in the subgroup of patients with prior lacunar infarct.

Paediatric population

Heterozygous Familial Hypercholesterolaemia in Paediatric Patients aged 6-17 years' old

An 8-week, open-label study to evaluate pharmacokinetics, pharmacodynamics, and safety and tolerability of atorvastatin was conducted in children and adolescents with genetically confirmed heterozygous familial hypercholesterolemia and baseline LDL-C \geq 4 mmol/L. A total of 39 children and adolescents, 6 to 17 years of age, were enrolled. Cohort A included 15 children, 6 to 12 years of age and at Tanner Stage 1. Cohort B included 24 children, 10 to 17 years of age and at Tanner Stage \geq 2.

The initial dose of atorvastatin was 5 mg daily of a chewable capsule in Cohort A and 10 mg daily of a capsule formulation in Cohort B. The atorvastatin dose was permitted to be doubled if a subject had not attained target LDL-C of < 3.35 mmol/L at Week 4 and if atorvastatin was well tolerated.

Mean values for LDL-C, TC, VLDL-C, and Apo B decreased by Week 2 among all subjects. For subjects whose dose was doubled, additional decreases were observed as early as 2 weeks, at the first assessment, after dose escalation. The mean percent decreases in lipid parameters were similar for both cohorts, regardless of whether subjects remained at their initial dose or doubled their initial dose. At Week 8, on average, the percent change from baseline in LDL-C and TC was approximately 40% and 30%, respectively, over the range of exposures.

In a second open label, single arm study, 271 male and female HeFH children 6-15 years of age were enrolled and treated with atorvastatin for up to three years. Inclusion in the study required confirmed HeFH and a baseline LDL-C level ≥ 4 mmol/L (approximately 152 mg/dL). The study included 139 children at Tanner 1 developmental stage (generally ranging from 6-10 years of age). The dosage of atorvastatin (once daily) was initiated at 5 mg (chewable capsule) in children less than 10 years of age. Children age 10 and above were initiated at 10 mg atorvastatin (once daily). All children could titrate to higher doses to achieve a target of < 3.35 mmol/L LDL-C. The mean weighted dose for children aged 6 to 9 years was 19.6 mg and the mean weighted dose for children aged 10 years and above was 23.9 mg.

The mean (+/- SD) baseline LDL-C value was 6.12 (1.26) mmol/L which was approximately 233 (48) mg/dL. See table 3 below for final results.

The data were consistent with no drug effect on any of the parameters of growth and development (i.e., height, weight, BMI, Tanner stage, Investigator assessment of Overall Maturation and Development) in paediatric and adolescent subjects with HeFH receiving atorvastatin treatment over the 3-year study. There was no Investigator-assessed drug effect noted in height, weight, BMI by age or by gender by visit.

TABLE 3. <u>Lipid-lowering Effects of Atorvastatin in Adolescent Boys and Girls with Heterozygous Familial Hypercholesterolemia (mmol/L)</u>

Time point	N	TC (S.D.)	LDL-C (S.D.)	HDL-C (S.D.)	TG (S.D.)	Apo B (S.D.)#
Baseline	271	7.86(1.30)	6.12(1.26)	1.314(0.2663)	0.93(0.47)	1.42(0.28)**
Month 30	206	4.95(0.77)*	3.25(0.67)	1.327(0.2796)	0.79(0.38)*	0.90(0.17)*
Month 36/ET	240	5.12(0.86)	3.45(0.81)	1.308(0.2739)	0.78(0.41)	0.93(0.20)***

TC= total cholesterol; LDL-C = low density lipoprotein cholesterol-C; HDL-C = high density lipoprotein cholesterol-C; TG = triglycerides; Apo B = apolipoprotein B; "Month 36/ET" included final visit data for subjects who ended participation prior to the scheduled 36 month time point as well as full 36 month data for subjects completing the 36 month participation; "*"= Month 30 N for this parameter was 207; "**"= Baseline N for this parameter was 270; "***" = Month 36/ET N for this parameter was 243; "#"=g/L for Apo B.

Heterozygous Familial Hypercholesterolaemia in Paediatric Patients aged 10-17 years' old

In a double-blind, placebo controlled study followed by an open-label phase, 187 boys and postmenarchal girls 10-17 years of age (mean age 14.1 years) with heterozygous familial hypercholesterolaemia (FH) or severe hypercholesterolaemia were randomised to atorvastatin (n=140) or placebo (n=47) for 26 weeks and then all received atorvastatin for 26 weeks. The dosage of atorvastatin (once daily) was 10 mg for the first 4 weeks and up-titrated to 20 mg if the LDL-C level was >3.36 mmol/L. Atorvastatin significantly decreased plasma levels of Total-C, LDL-C, triglycerides, and apolipoprotein B during the 26-week double-blind phase. The mean achieved LDL-C value was 3.38 mmol/L (range: 1.81-6.26 mmol/L) in the atorvastatin group compared to 5.91 mmol/L (range: 3.93-9.96 mmol/L) in the placebo group during the 26-week double-blind phase.

An additional paediatric study of atorvastatin versus colestipol in patients with hypercholesterolaemia aged 10-18 years demonstrated that atorvastatin (N=25) caused a significant reduction in LDL-C at week 26 (p<0.05) compared with colestipol (N=31).

A compassionate use study in patients with severe hypercholesterolaemia (including homozygous hypercholesterolaemia) included 46 paediatric patients treated with atorvastatin titrated according to response (some subjects received 80 mg atorvastatin per day). The study lasted 3 years: LDL-cholesterol was lowered by 36%.

The long-term efficacy of atorvastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

The European Medicines Agency has waived the obligation to submit the results of studies with atorvastatin in children aged 0 to less than 6 years in the treatment of heterozygous hypercholesterolaemia and in children aged 0 to less than 18 years in the treatment of homozygous familial hypercholesterolaemia, combined (mixed) hypercholesterolaemia, primary hypercholesterolaemia and in the prevention of cardiovascular events (see Posology and method of administration for information on paediatric use).

5.3 Pharmacokinetic Properties

Clopidogrel

Absorption

After single and repeated oral doses of 75 mg per day, clopidogrel is rapidly absorbed. Mean peak plasma levels of unchanged clopidogrel (approximately 2.2-2.5 ng/ml after a single 75 mg oral dose) occurred approximately 45 minutes after dosing. Absorption is at least 50%, based on urinary excretion of clopidogrel metabolites.

Distribution

Clopidogrel and the main circulating (inactive) metabolite bind reversibly in vitro to human plasma proteins (98% and 94% respectively). The binding is non-saturable in vitro over a wide concentration range.

Biotransformation

Clopidogrel is extensively metabolised by the liver. In vitro and in vivo, clopidogrel is metabolised according to two main metabolic pathways: one mediated by esterases and leading to hydrolysis into its inactive carboxylic acid derivative (85% of circulating metabolites), and one mediated by multiple cytochromes P450. Clopidogrel is first metabolised to a 2-oxoclopidogrel intermediate metabolite. Subsequent metabolism of the 2-oxo-clopidogrel intermediate metabolite results in formation of the active metabolite, a thiol derivative of clopidogrel. The active metabolite is formed mostly by CYP2C19 with contributions from several other CYP enzymes, including CYP1A2, CYP2B6 and CYP3A4. The active thiol metabolite which has been isolated in vitro, binds rapidly and irreversibly to platelet receptors, thus inhibiting platelet aggregation.

The C_{max} of the active metabolite is twice as high following a single 300-mg clopidogrel loading dose as it is after four days of 75-mg maintenance dose. Cmax occurs approximately 30 to 60 minutes after dosing.

Elimination

Following an oral dose of 14C-labelled clopidogrel in man, approximately 50% was excreted in the urine and approximately 46% in the faeces in the 120-hour interval after dosing. After a single oral dose of 75 mg, clopidogrel has a half-life of approximately 6 hours. The elimination half-life of the main circulating (inactive) metabolite was 8 hours after single and repeated administration.

Pharmacogenetics

CYP2C19 is involved in the formation of both the active metabolite and the 2-oxo-clopidogrel intermediate metabolite. Clopidogrel active metabolite pharmacokinetics and antiplatelet effects, as measured by ex vivo platelet aggregation assays, differ according to CYP2C19 genotype.

The CYP2C19*1 allele corresponds to fully functional metabolism while the CYP2C19*2 and CYP2C19*3 alleles are non-functional. The CYP2C19*2 and CYP2C19*3 alleles account for the majority of reduced function alleles in Caucasian (85%) and Asian (99%) poor metabolisers. Other alleles associated with absent or reduced metabolism are less frequent and include CYP2C19*4, *5, *6, *7, and *8. A patient with poor metaboliser status will possess two loss-of-function alleles as defined above. Published frequencies for the poor CYP2C19 metaboliser genotypes are approximately 2% for Caucasians, 4% for Blacks and 14% for Chinese. Tests are available to determine a patient's CYP2C19 genotype.

A crossover study in 40 healthy subjects, 10 each in the four CYP2C19 metaboliser groups (ultrarapid, extensive, intermediate and poor), evaluated pharmacokinetic and antiplatelet responses using 300 mg followed by 75 mg/day and 600 mg followed by 150 mg/day, each for a total of 5 days (steady state). No substantial differences in active metabolite exposure and mean inhibition of platelet aggregation (IPA) were observed between ultrarapid, extensive and intermediate metabolisers. In poor metabolisers, active metabolite exposure was decreased by 63-71% compared to extensive metabolisers. After the 300 mg/75 mg dose regimen, antiplatelet responses were decreased in the poor metabolisers with mean IPA (5 µM ADP) of 24% (24 hours) and 37% (Day 5) as compared to IPA of 39% (24 hours) and 58% (Day 5) in the extensive metabolisers and 37% (24 hours) and 60% (Day 5) in the intermediate metabolisers. When poor metabolisers received the 600 mg/150 mg regimen, active metabolite exposure was greater than with the 300 mg/75 mg regimen. In addition, IPA was 32% (24 hours) and 61% (Day 5), which were greater than in the poor metabolisers receiving the 300 mg/75 mg regimen, and were similar to the other CYP2C19 metaboliser groups receiving the 300 mg/75 mg regimen. An appropriate dose regimen for this patient population has not been established in clinical outcome trials.

Consistent with the above results, in a meta-analysis including 6 studies of 335 clopidogreltreated subjects at steady state, it was shown that active metabolite exposure was decreased by 28% for intermediate metabolisers, and 72% for poor metabolisers while platelet aggregation inhibition (5 μ M ADP) was decreased with differences in IPA of 5.9% and 21.4%, respectively, when compared to extensive metabolisers.

The influence of CYP2C19 genotype on clinical outcomes in patients treated with clopidogrel has not been evaluated in prospective, randomised, controlled trials. There have been a number of retrospective analyses, however, to evaluate this effect in patients treated with clopidogrel for whom there are genotyping results: CURE (n=2721), CHARISMA (n=2428), CLARITYTIMI 28 (n=227), TRITON-TIMI 38 (n=1477), and ACTIVE-A (n=601), as well as a number of published cohort studies.

In TRITON-TIMI 38 and 3 of the cohort studies (Collet, Sibbing, Giusti) the combined group of patients with either intermediate or poor metaboliser status had a higher rate of cardiovascular events (death, myocardial infarction, and stroke) or stent thrombosis compared to extensive metabolisers.

In CHARISMA and one cohort study (Simon), an increased event rate was observed only in poor metabolisers when compared to extensive metabolisers.

In CURE, CLARITY, ACTIVE-A and one of the cohort studies (Trenk), no increased event rate was observed based on metaboliser status.

None of these analyses were adequately sized to detect differences in outcome in poor metabolisers.

Special populations

The pharmacokinetics of the active metabolite of clopidogrel is not known in these special populations.

Renal impairment

After repeated doses of 75 mg clopidogrel per day in subjects with severe renal disease (creatinine clearance from 5 to 15 ml/min), inhibition of ADP-induced platelet aggregation was lower (25%) than that observed in healthy subjects, however, the prolongation of bleeding time was similar to that seen in healthy subjects receiving 75 mg of clopidogrel per day. In addition, clinical tolerance was good in all patients.

Hepatic impairment

After repeated doses of 75 mg clopidogrel per day for 10 days in patients with severe hepatic impairment, inhibition of ADP-induced platelet aggregation was similar to that observed in healthy subjects. The mean bleeding time prolongation was also similar in the two groups.

Race

The prevalence of CYP2C19 alleles that result in intermediate and poor CYP2C19 metabolism differs according to race/ethnicity. From literature, limited data in Asian populations are available to assess the clinical implication of genotyping of this CYP on clinical outcome events.

Aspirin

Aspirin is rapidly absorbed after oral administration of conventional release preparations, with some hydrolysis to salicylate before absorption. Absorption is delayed by the presence of food and is impaired in patients suffering migraine attacks.

Absorption is more rapid in patients with achlorhydria and also following administration of polysorbates and antacids. Plasma concentrations of the drug increase disproportionately to the dose; e.g. a 325 mg dose having a half-life of 2-3 hours and higher doses showing lower plasma concentrations in the presence of an increased half-life due to a disproportionate increase in the volume of distribution.

Aspirin is found in saliva, milk, plasma and synovial fluid at concentrations less than in blood and crosses the placenta. Salicylate/protein binding extensive. Aspirin/protein binding to a small extent. In the blood, rapid hydrolysis to salicylic acid; glucuronic acid/glycine conjugation to form glucuronides and salicyluronic acid. Salicylate reabsorbed by renal tubules in acid urine, and alkaline diuresis will increase the rate of excretion; 85% of dose excreted as free salicylate.

The absolute bioavailability of aspirin from Aspirin 75mg Gastro-Resistant Capsule (compared with intravenous aspirin solution) is approximately 25%.

6. NONCLINICAL PROPERTIES

6.1 Animal Toxicology or Pharmacology

Clopidogrel

During non-clinical studies in rat and baboon, the most frequently observed effects were liver changes. These occurred at doses representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day and were a consequence of an effect on hepatic metabolising enzymes. No effect on hepatic metabolising enzymes was observed in humans receiving clopidogrel at the therapeutic dose.

At very high doses, a poor gastric tolerability (gastritis, gastric erosions and/or vomiting) of clopidogrel was also reported in rat and baboon.

There was no evidence of carcinogenic effect when clopidogrel was administered for 78 weeks to mice and 104 weeks to rats when given at doses up to 77 mg/kg per day (representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day).

Clopidogrel has been tested in a range of in vitro and in vivo genotoxicity studies, and showed no genotoxic activity.

Clopidogrel was found to have no effect on the fertility of male and female rats and was not teratogenic in either rats or rabbits. When given to lactating rats, clopidogrel caused a slight

delay in the development of the offspring. Specific pharmacokinetic studies performed with radiolabelled clopidogrel have shown that the parent compound or its metabolites are excreted in the milk. Consequently, a direct effect (slight toxicity), or an indirect effect (low palatability) cannot be excluded.

Aspirin

There are no pre-clinical data of relevance.

Atorvastatin

Atorvastatin was negative for mutagenic and clastogenic potential in a battery of 4 in vitro tests and 1 in vivo assay. Atorvastatin was not found to be carcinogenic in rats, but high doses in mice (resulting in 6-11 fold the AUC0-24h reached in humans at the highest recommended dose) showed hepatocellular adenomas in males and hepatocellular carcinomas in females.

There is evidence from animal experimental studies that HMG-CoA reductase inhibitors may affect the development of embryos or foetuses. In rats, rabbits and dogs atorvastatin had no effect on fertility and was not teratogenic, however, at maternally toxic doses foetal toxicity was observed in rats and rabbits. The development of the rat offspring was delayed and postnatal survival reduced during exposure of the dams to high doses of atorvastatin. In rats, there is evidence of placental transfer. In rats, plasma concentrations of atorvastatin are similar to those in milk. It is not known whether atorvastatin or its metabolites are excreted in human milk.

7. DESCRIPTION

Clopidogrel Bisulphate

Clopidogrel bisulphate, a thienopyridine class inhibitor of P2Y12 ADP platelet receptors. Chemically it is methyl (+) -(S)- α -(2-chlorophenyl)-6,7-dihydrothieno[3,2-c] pyridine-5-(4H) acetate sulfate. The empirical formula of clopidogrel bisulfate is $C_{16}H_{16}ClNO_2S \cdot H_2SO_4$ and its molecular weight is 419.9.

The structural formula is as follows:

Clopidogrel bisulphate IP is a white to off-white powder. It is freely soluble in methanol; practically insoluble in ether.

Atorvastatin Calcium

Atorvastatin Calcium is calcium salt of $(\beta R, 8R)$ -2-(4-fluorophenyl)- α , δ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid trihydrate. The empirical formula of atorvastatin calcium is $(C_{33}H_{34}FN_2O_5)_2Ca\cdot 3H_2O$ and its molecular weight is 1209.42. Its structural formula is:

Atorvastatin calcium is a white to off-white crystalline powder. It is freely soluble in methanol; slightly soluble in ethanol (95%) and very slightly soluble in water.

Aspirin

The antiplatelet agent aspirin (acetylsalicylic acid) is chemically known as benzoic acid, 2-(acetyloxy)-, and has the following structural formula:

Aspirin IP is colourless crystals or a white, crystalline powder; odourless or almost odourless. It is freely soluble in ethanol (95 per cent) and soluble in chloroform and in ether; slightly soluble in water. The empirical formula of aspirin is C₉H₈O₄ and its molecular weight is 180.2.

Deplatt CV

Clopidogrel Bisulphate with Atorvastatin and Aspirin Capsules are Size "0" hard gelatin capsules with off white cap and off white body containing white to off white granular powder, one reddish brown colored, round shaped, biconvex, film coated tablet with plain on both sides and one orange colored, round shaped, biconvex, enteric coated tablet with plain on both sides. The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Lake of Ponceau 4R, Red Oxide of Iron, Purified water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

Deplatt CV 20

Clopidogrel Bisulphate with Atorvastatin and Aspirin Capsules are Size "0" hard gelatin capsules with Blue cap and white to off white body containing white to off white granular powder, one white to off white colored, round shaped, biconvex, film coated tablet with plain on both sides and one light orange colored, round shaped, biconvex, enteric coated tablet with plain on both sides. The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Purified

water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

8. PHARMACEUTICAL PARTICULARS

8.1 Incompatibilities

Not available

8.2 Shelf-life

Do not use later than date of expiry.

8.3 Packaging information

DEPLATT-CV is available in Blister strip of 10 capsules.

8.4 Storage and Handing Instructions

Store in a dry place at a temperature not exceeding 25°C, protected from light.

Keep out of reach of children

9. PATIENT COUNSELLING INFORMATION DEPLATT-CV

Package leaflet: Information for the user

Clopidogrel Bisulphate with Atorvastatin and Aspirin Capsules.

Read all of this leaflet carefully before you start. taking this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or your pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you have any side effects, including any side effects not listed in this leaflet, talk to your doctor or pharmacist.

What is in this leaflet

- 1. What DEPLATT-CV is and what it is used for
- 2. What you need to know before you take DEPLATT-CV
- 3. How to take DEPLATT-CV
- 4. Possible side effects
- 5. How to store DEPLATT-CV
- 6. Contents of the pack and other information

1.What DEPLATT-CV is and what it is used for

DEPLATT-CV is combination of clopidogrel and acetylsalicylic acid (ASA) and belongs to a group of medicines called antiplatelet medicinal products. Platelets are very small structures in the blood which clump together during blood clotting. By preventing this clumping in some types of blood vessels (called arteries), antiplatelet medicinal products reduce the chances of

blood clots forming (a process called atherothrombosis).and Atorvastatin (belongs to a group of medicines known as statins, which are lipid (fat) regulating medicines.)

DEPLATT-CVis used in the treatment of patients with PCI (Percutaneous coronary intervention) and myocardial infarction (MI).

2. What you need to know before you take DEPLATT-CV

Do not take DEPLATT-CV

- if you are allergic to clopidogrel, acetylsalicylic acid (ASA) or any of the other ingredients of this medicine.
- if you are allergic to other products called non-steroidal anti-inflammatory products usually used to treat painful and/or inflammatory conditions of muscles or joints.
- if you have a medical condition that includes the combination of asthma, nasal discharge (runny nose) and polyps (a type of growth in the nose).
- if you have a medical condition that is currently causing bleeding such as a stomach ulcer or bleeding within the brain.
- if you suffer from severe liver disease.
- if you suffer from severe kidney disease.
- if you are in your last trimester of pregnancy.
 if you use the combination of glecaprevir/pibrentasvir in the treatment of hepatitis C
 if you are a woman able to have children and not using reliable contraception

Warnings and precautions

If any of the situations mentioned below apply to you, you should tell your doctor before taking Clopidogrel/Aspirin:

- \Box if you have a risk of bleeding such as:
- a medical condition that puts you at risk of internal bleeding (such as a stomach ulcer).
- a blood disorder that makes you prone to internal bleeding (bleeding inside any tissues, organs or joints of your body).
- a recent serious injury.
- a recent surgery (including dental).
- a planned surgery (including dental) in the next seven days.

\sqcup 1f you have ha	ad a clot in an	artery of your	brain (1so	chaemic st	roke) wh	ich occurred	in the	last
seven days.								

☐ if you have kidney or liver disease.	
\Box if you have a history of asthma or allergic reactions including allergy to any medici	ne used
to treat your disease.	

if you are taking or have taken in the last 7 days a medicine called fusidic acid, (a medicine for bacterial infection) orally or by injection. The combination of fusidic acid and Lipitor can lead to serious muscle problems (rhabdomyolysis)

	it	you	have	severe	rest	pirator	y fai	lure

\square if you have gout.
\Box if you drink alcohol, because of the increased risk of bleeding or gastrointestinal injury.
□ if you have a condition known as glucose-6-phosphate dehydrogenase (G6PD) deficiency because of the risk of a particular form of anaemia (low number of red blood cells). While you are taking Clopidogrel/Aspirin:
☐ You should tell your doctor
- if a surgery (including dental) is planned.
- if you have any stomach or abdominal pain or bleeding in the stomach or bowels (red stools or black stools).
☐ You should also tell your doctor immediately if you develop a medical condition known as
Thrombotic Thrombocytopenic Purpura or TTP that includes fever and bruising under the skin
that may appear as red pinpoint dots, with or without unexplained extreme tiredness, confusion,
yellowing of the skin or eyes (jaundice).
\Box If you cut or injure yourself, it may take longer than usual for bleeding to stop. This is linked to the way your medicine works as it prevents the ability of blood clots to form. For minor cuts and injuries e.g., cutting yourself, shaving, this is usually of no concern. However, if you are
concerned by your bleeding, you should contact your doctor straightaway
☐ Your doctor may order blood tests.
if you have had repeated or unexplained muscle aches or pains, a personal history or family history of muscle problems
\Box if you have had previous muscular problems during treatment with other lipid-lowering medicines (e.g. other '-statin' or '-fibrate' medicines)
☐ if you regularly drink a large amount of alcohol
☐ if you have a history of liver disease
\Box if you are older than 70 years

Children and adolescents

Inappropriate use of aspirin in children under 12 years-of-age indicates that health education about the possible risks of Reye's Syndrome needs to be improved.

If any of these apply to you, your doctor will need to carry out a blood test before and possibly during your Lipitor treatment to predict your risk of muscle related side effects. The risk of muscle related side effects e.g. rhabdomyolysis is known to increase when certain medicines are taken at the same time (see section 2 "Other medicines and Lipitor").

Also tell your doctor or pharmacist if you have a muscle weakness that is constant. Additional tests and medicines may be needed to diagnose and treat this.

While you are on this medicine your doctor will monitor you closely if you have diabetes or are at risk of developing diabetes. You are likely to be at risk of developing diabetes if you have high levels of sugars and fats in your blood, are overweight and have high blood pressure.

Other medicines and DEPLATT-CV

Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines. Some other medicines may influence the use of Clopidogrel/Aspirin or vice versa.

You should specifically tell your doctor if you take

- medicines that may increase your risk of bleeding such as:
- oral anticoagulants, medicines used to reduce blood clotting,
- ASA or another non-steroidal anti-inflammatory medicine usually used to treat painful and/or inflammatory conditions of muscle or joints,
- heparin or any other injectable medicine used to reduce blood clotting,
- ticlopidine, other antiplatelet agent, a selective serotonin reuptake inhibitor (including but not restricted to fluoxetine or fluoxamine), medicines usually used to treat depression,
- omeprazole or esomeprazole, medicines to treat upset stomach,
- methotrexate, a medicine used to treat severe joint disease (rheumatoid arthritis) or skin disease (psoriasis),
- acetazolamide, a medicine used to treat glaucoma (increased ocular pressure) or epilepsy or to increase urine flow,
- probenecid, benzbromarone, or sulfinpyrazone, medicines used to treat gout,
- fluconazole or voriconazole, medicines to treat fungal infections,
- efavirenz or tenofovir, medicines to treat HIV (human immunodeficiency virus) infections,
- valproic acid, valproate or carbamazepine, medicines to treat some forms of epilepsy,
- the varicella vaccine, a medicine used to prevent chickenpox or shingles, within 6 weeks of taking Clopidogrel/Aspirin, or if you have active chickenpox or shingles infection
- moclobemide, medicine to treat depression,
- repaglinide, medicine to treat diabetes,
- paclitaxel, medicine to treat cancer,
- nicorandil, medicine to treat cardiac chest pain.

You should stop other clopidogrel treatment while you are taking Clopidogrel/Aspirin. An occasional use of ASA (no more than 1,000 mg in any 24-hour period) should generally not cause a problem, but prolonged use of ASA in other circumstances should be discussed with your doctor or pharmacist.

Medicines used to alter the way your immune system works, e.g. ciclosporin
☐ Certain antibiotics or antifungal medicines, e.g. erythromycin, clarithromycin, telithromycin, ketoconazole, itraconazole, voriconazole, fluconazole, posaconazole, rifampin, fusidic acid
☐ Other medicines to regulate lipid levels, e.g. gemfibrozil, other fibrates, colestipol
☐ Some calcium channel blockers used for angina or high blood pressure, e.g. amlodipine, diltiazem; medicines to regulate your heart rhythm e.g. digoxin, verapamil, amiodarone
☐ Medicines used in the treatment of HIV e.g. ritonavir, lopinavir, atazanavir, indinavir, darunavir, the combination of tipranavir/ritonavir etc.
☐ Some medicines used in the treatment of hepatitis C e.g. telaprevir, boceprevir and the combination of elbasvir/grazoprevir

□ Other medicines known to interact with Lipitor include ezetimibe (which lowers
cholesterol), warfarin (which reduces blood clotting), oral contraceptives, stiripentol (an anti-
convulsant for epilepsy), cimetidine (used for heartburn and peptic ulcers), phenazone (a
painkiller), colchicine (used to treat gout), and antacids (indigestion products containing
aluminium or magnesium)
☐ Medicines obtained without a prescription: St John's Wort
☐ If you need to take oral fusidic acid to treat a bacterial infection you will need to temporarily
stop using this medicine. Your doctor will tell you when it is safe to restart Lipitor. Taking
Lipitor with fusidic acid may rarely lead to muscle weakness, tenderness or pain
(rhabdomyolysis). See more information regarding rhabdomyolysis in section 4.

Pregnancy and breast-feeding

Do not take Clopidogrel/Aspirin during third trimester of pregnancy. It is preferable not to take this medicine during first and second trimesters of pregnancy.

If you are pregnant or suspect that you are pregnant, you should tell your doctor or your pharmacist before taking Clopidogrel/Aspirin. If you become pregnant while taking Clopidogrel/Aspirin, consult your doctor immediately as it is recommended not to take Clopidogrel/Aspirin while you are pregnant.

You should not breast-feed while using this medicine.

If you are breast-feeding or planning to breast-feed, talk to your doctor before taking this medicine. Ask your doctor or pharmacist for advice before taking any medicine.

Driving and using machines

Clopidogrel/Aspirin should not affect your ability to drive or to use machines. This may cause stomach upset or diarrhoea.

3. How to take DEPLATT-CV

Always take this medicine exactly as your doctor or pharmacist has told you. Check with your doctor or pharmacist if you are not sure.

The recommended dose is one capsule of Clopidogrel/Aspirin per day to be taken orally with a glass of water,

You should take your medicine at the same time each day. Depending on your condition, your doctor will determine the length of time for which you need to take Clopidogrel/Aspirin.

If you have had a heart attack, it should be prescribed for at least four weeks. In any case, you should take it for as long as your doctor continues to prescribe it.

If you take more DEPLATT-CV

Contact your doctor or the nearest hospital emergency department because of the increased risk of bleeding. If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

If you forget to take DEPLATT-CV

If you miss a dose, wait until it is time for your next dose, then go on as normal. Do not take a double dose to make up for a forgotten capsule. If you have any further questions on the use of

this medicine, ask your doctor or pharmacist.

If you stop taking Clopidogrel/Aspirin

Do not stop the treatment unless your doctor tells you so. Contact your doctor before stopping or restarting your treatment. If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

DEPLATT-CV with food and drink

See section 3 for instructions on how to take Lipitor. Please note the following *Grapefruit juice*

Do not take more than one or two small glasses of grapefruit juice per day because large quantities of grapefruit juice can change the effects of Lipitor.

Alcohol

Avoid drinking too much alcohol while taking this medicine. See section 2 "Warnings and precautions" for details.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Contact your doctor immediately if you experience:

- fever, signs of infection or extreme tiredness. These may be due to rare decrease of some blood cells.
- signs of liver problems such as yellowing of the skin and/or the eyes (jaundice), whether or not associated with bleeding which appears under the skin as red pinpoint dots, and/or confusion.
- swelling in the mouth or skin disorders such as rashes and itching, blisters of the skin. These may be the signs of an allergic reaction.

Reddening of the skin with blisters or peeling and may be associated with a high fever and joint pains. This could by erythema multiforme, Stevens-Johnson syndrome or Lyell's syndrome.

• Unusual bleeding, such as coughing up blood, blood in your vomit or urine, or black stools.

The most common side effect which has been seen with Clopidogrel/Aspirin is bleeding. Bleeding may occur as bleeding in the stomach or bowels, bruising, haematoma (unusual bleeding or bruising under the skin), nose bleed, blood in the urine. In a small number of cases, bleeding in the eye, inside the head (especially in elderly), the lung or the joints has also been reported.

If you experience prolonged bleeding when taking Clopidogrel/Aspirin If you cut or injure yourself, it may take longer than usual for bleeding to stop. This is linked to the way your medicine works as it prevents the ability of blood clots to form. For minor cuts and injuries

e.g., cutting yourself, shaving, this is usually of no concern. However, if you are concerned by your bleeding, you should contact your doctor straightaway.

Other side effects include:

Common side effects (may affect up to 1 in 10 people):

- Diarrhoea, abdominal pain, indigestion or heartburn.
- inflammation of the nasal passages, pain in the throat, nose bleed

- allergic reactions
- increases in blood sugar levels (if you have diabetes continue careful monitoring of your blood sugar levels), increase in blood creatine kinase
- headache
- nausea, constipation, wind,
- joint pain, muscle pain and back pain
- blood test results that show your liver function can become abnormal

Uncommon side effects (may affect up to 1 in 100 people):

- · Headache.
- · stomach ulcer
- nausea
- constipation,
- Excessive gas in stomach or intestines sensation of tingling and numbness.
- Hives.
- Runny noses.
- Breathing difficulty.
- •anorexia (loss of appetite), weight gain, decreases in blood sugar levels (if you have diabetes you should continue careful monitoring of your blood sugar levels)
- having nightmares, insomnia
- Dizziness, numbness or tingling in the fingers and toes, reductions of sensation to pain or touch, change in sense of taste, loss of memory
- blurred vision
- ringing in the ears and/or head
- Vomiting, belching, abdominal pain upper and lower, pancreatitis (inflammation of the pancreas leading to stomach pain)
- Hepatitis (liver inflammation)
- Rash, skin rash and itching, hives, hair loss
- Neck pain, muscle fatigue
- Fatigue, feeling unwell, weakness, chest pain, swelling especially in the ankles (oedema), raised temperature
- Urine tests that are positive for white blood cells

Rare side effect (may affect up to 1 in 1000 people):

Vertigo, enlarged breasts in males. Severe bleeding in the stomach or intestines, brain haemorrhage; altered number of blood cells.

- Nausea and vomiting.
- Cramps in the lower respiratory tract, asthma attack.
- Inflammation in the blood vessels.

- Bruising with purple spots (cutaneous bleeding).
- Severe skin reactions such as rash known as erythema multiforme and its life threatening forms Stevens-Johnson syndrome and Lyell's syndrome.
- Hypersensitivity reactions, such as swelling of e.g. lips, face or body, or shock.
- Abnormal heavy or prolonged menstrual periods

Serious allergic reaction which causes swelling of the face, tongue and throat that can cause great difficulty in breathing.

□ Serious illness with severe peeling and swelling of the skin, blistering of the skin, mouth, eyes, genitals and fever. Skin rash with pink-red blotches especially on palms of hands or soles of feet which may blister.

□ Muscle weakness, tenderness or pain and particularly, if at the same time, you feel unwell or have a high temperature it may be caused by an abnormal muscle breakdown (rhabdomyolysis). The abnormal muscle breakdown does not always go away, even after you have stopped taking atorvastatin, and it can be life-threatening and lead to kidney problems.

Very rare side effects (may affect up to 1 in 10,000 people):

Jaundice; severe abdominal pain with or without back pain; fever, breathing difficulties sometimes associated with cough; generalised allergic reactions (for example, overall sensation of heat with sudden general discomfort until fainting); swelling in the mouth; blisters of the skin; skin allergy; sore mouth (stomatitis); decrease in blood pressure; confusion; hallucinations; joint pain; muscular pain; changes in taste or loss of taste of food.

Side effects with frequency not known (frequency cannot be estimated from the available data):

Hypersensitivity reactions with chest or abdominal pain, persistent low blood sugar symptoms.

In addition, your doctor may identify changes in your blood or urine test results.

- Ringing in your ears (tinnitus) or reduced hearing ability.
- · Headache.
- Vertigo.
- Ulcers in stomach or small intestine and perforation.
- Prolonged bleeding time.
- Impaired kidney function.
- Salt or water retention which may cause swelling of hands, feet, legs, stomach, breasts or face.
- Impaired liver function.
- High level of uric acid in the blood.

If you experience problems with unexpected or unusual bleeding or bruising, this may be suggestive of a liver complaint. You should consult your doctor as soon as possible.

☐ Lupus-like disease syndrome (including rash, joint disorders and effects on blood cells).

5. How to store DEPLATT-CV

Store in a dry place at a temperature not exceeding 25°C, protected from light. Keep out of reach of children

6 Contents of the pack and other information

DEPLATT-CV

The active substances are clopidogrel, Aspirin and atorvastatin. Each capsule contains 75 mg of clopidogrel, 75 mg of Aspirin and 10 mg of Atorvastatin.

The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Lake of Ponceau 4R, Red Oxide of Iron, Purified water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

DEPLATT-CV 20

The active substances are clopidogrel, Aspirin and atorvastatin. Each capsule contains 75 mg of clopidogrel, 75 mg of Aspirin and 20 mg of Atorvastatin.

The excipients used are Calcium carbonate, Lactose, Microcrystalline cellulose, Croscarmellose sodium, Hydroxypropyl methyl cellulose, Polysorbate 80, Colloidal silicon dioxide, Magnesium Stearate, Polyethylene Glycol, Titanium dioxide, Talc, Purified water, Hydroxypropyl cellulose, Stearic acid, Ethyl cellulose, Diethyl phthalate, Isopropyl alcohol, Methylene chloride, Eudragit L30, Triethyl citrate, Lake of Sunset Yellow, Mannitol, Crospovidone, Hydrogenated Castor oil.

10. DETAILS OF MANUFACTURER

Manufactured in India by:

Surien Pharmaceuticals (P) Ltd.

No.: 108, Chekkady Street, Kovur, Chennai – 600 128, Tamil Nadu.

Manufactured by:

Tristar Formulations Pvt. Limited

Plot No. A-116 & A-117, 27th Cross, PIPDIC Industrial Estate,

Mettupalayam, Puducherry-605 009.

11. DETAILS OF PERMISSION OR LICENCE NUMBER WITH DATE

Surien Pharmaceuticals (P) Ltd. - Mfg Licence No.: 1137 issued on 27.02.2015

Tristar Formulations Pvt. Limited - Mfg Licence No.: 04 13 1106 issued on 20.01.2015

12. DATE OF REVISION

July 2019

MARKETED BY

TORRENT PHARMACEUTICALS LTD.

Torrent House, Off Ashram Road,

Ahmedabad-380 009, INDIA

IN/DEPLATT-CV 75, 10,20,75mg/JUL-2019/05/PI